Spaces:
Running
Running
Upload weights_sweep.py
Browse files- weights_sweep.py +151 -0
weights_sweep.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
weights_sweep.py — Auto-tuning legal tag weights via W&B Sweeps
|
| 4 |
+
|
| 5 |
+
کارکرد اجرایی:
|
| 6 |
+
- هر ران: وزنها از config → نوشتن legal_entity_weights.json → اجرای GoldenBuilder روی یک زیرمجموعه کوچک →
|
| 7 |
+
محاسبهٔ pass_rate (نرخ قبولی گیت کیفیت) → لاگ متریکها و آرتیفکتها روی W&B.
|
| 8 |
+
- در پایان Sweep، از داشبورد W&B «بهترین Run» را انتخاب کنید و وزنها را تثبیت نمایید
|
| 9 |
+
(یا از آرتیفکت همان Run دانلود کنید و جایگزین legal_entity_weights.json نمایید).
|
| 10 |
+
|
| 11 |
+
پیشنیاز:
|
| 12 |
+
- فایل golden_builder.py در ریشه ریپو
|
| 13 |
+
- Secrets: WANDB_API_KEY در HF Spaces
|
| 14 |
+
- requirements: wandb, transformers, torch, ...
|
| 15 |
+
|
| 16 |
+
پارامترها (قابلتنظیم از طریق env یا UI):
|
| 17 |
+
- TUNE_DATA: مسیر فایل JSON/JSONL داده
|
| 18 |
+
- TUNE_TEXT_KEY: کلید متن در داده (پیشفرض "متن_کامل")
|
| 19 |
+
- TUNE_MAX_SAMPLES: تعداد نمونهٔ کوچک برای هر ران (پیشفرض 120)
|
| 20 |
+
- TUNE_BATCH: batch size Builder (پیشفرض 2)
|
| 21 |
+
- TUNE_COUNT: تعداد ران در sweep (پیشفرض 16)
|
| 22 |
+
- WANDB_PROJECT, WANDB_ENTITY: پروژه/ورکاسپیس W&B
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
import json
|
| 27 |
+
import random
|
| 28 |
+
from typing import Dict, List
|
| 29 |
+
|
| 30 |
+
import wandb
|
| 31 |
+
|
| 32 |
+
# فضای جستوجو: در صورت نیاز بازهها را سختگیرانهتر/وسیعتر کنید
|
| 33 |
+
SWEEP_CONFIG = {
|
| 34 |
+
"method": "bayes", # "random" یا "grid" هم قابل استفاده است
|
| 35 |
+
"metric": {"name": "pass_rate", "goal": "maximize"},
|
| 36 |
+
"parameters": {
|
| 37 |
+
"STATUTE": {"min": 0.8, "max": 1.4},
|
| 38 |
+
"COURT": {"min": 0.6, "max": 1.2},
|
| 39 |
+
"CRIME": {"min": 0.9, "max": 1.6},
|
| 40 |
+
"CIVIL": {"min": 0.5, "max": 1.2},
|
| 41 |
+
"PROCED": {"min": 0.5, "max": 1.0},
|
| 42 |
+
"PARTY": {"min": 0.4, "max": 0.9},
|
| 43 |
+
"BUSINESS": {"min": 0.4, "max": 0.9},
|
| 44 |
+
}
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
DEFAULT_TEXT_KEY = "متن_کامل"
|
| 48 |
+
|
| 49 |
+
def write_weights_file(weights: Dict[str, float], path: str = "legal_entity_weights.json"):
|
| 50 |
+
with open(path, "w", encoding="utf-8") as f:
|
| 51 |
+
json.dump({k: float(v) for k, v in weights.items()}, f, ensure_ascii=False, indent=2)
|
| 52 |
+
|
| 53 |
+
def sample_data(path: str, text_key: str, max_samples: int) -> List[dict]:
|
| 54 |
+
from golden_builder import load_json_or_jsonl
|
| 55 |
+
data = load_json_or_jsonl(path)
|
| 56 |
+
data = [r for r in data if isinstance(r, dict) and text_key in r and isinstance(r[text_key], str) and len(r[text_key].strip()) > 20]
|
| 57 |
+
random.shuffle(data)
|
| 58 |
+
return data[:max_samples]
|
| 59 |
+
|
| 60 |
+
def run_once(data_path: str, text_key: str, max_samples: int, batch_size: int):
|
| 61 |
+
"""
|
| 62 |
+
یک اجرای واحد Agent: وزنها ← Builder → pass_rate
|
| 63 |
+
"""
|
| 64 |
+
cfg = wandb.config
|
| 65 |
+
weights = {
|
| 66 |
+
"STATUTE": cfg.STATUTE,
|
| 67 |
+
"COURT": cfg.COURT,
|
| 68 |
+
"CRIME": cfg.CRIME,
|
| 69 |
+
"CIVIL": cfg.CIVIL,
|
| 70 |
+
"PROCED": cfg.PROCED,
|
| 71 |
+
"PARTY": cfg.PARTY,
|
| 72 |
+
"BUSINESS": cfg.BUSINESS,
|
| 73 |
+
}
|
| 74 |
+
write_weights_file(weights) # این فایل توسط GoldenBuilder خوانده میشود
|
| 75 |
+
|
| 76 |
+
from golden_builder import GoldenBuilder, save_jsonl
|
| 77 |
+
rows_in = sample_data(data_path, text_key, max_samples=max_samples)
|
| 78 |
+
|
| 79 |
+
if not rows_in:
|
| 80 |
+
wandb.log({"pass_rate": 0.0, "kept": 0, "processed": 0})
|
| 81 |
+
wandb.summary.update({"weights": weights})
|
| 82 |
+
return
|
| 83 |
+
|
| 84 |
+
# برای سرعت/پایداری: mt5-base کافی است؛ اگر مدل دیگری میخواهید، پارامتر کنید
|
| 85 |
+
gb = GoldenBuilder(model_name="google/mt5-base")
|
| 86 |
+
rows_out = gb.build(rows_in, text_key=text_key, batch_size=batch_size)
|
| 87 |
+
|
| 88 |
+
processed = len(rows_in)
|
| 89 |
+
kept = len(rows_out)
|
| 90 |
+
pass_rate = kept / max(processed, 1)
|
| 91 |
+
|
| 92 |
+
# لاگ متریکها + وزنها
|
| 93 |
+
wandb.log({
|
| 94 |
+
"pass_rate": pass_rate,
|
| 95 |
+
"kept": kept,
|
| 96 |
+
"processed": processed
|
| 97 |
+
})
|
| 98 |
+
wandb.summary.update({"weights": weights})
|
| 99 |
+
|
| 100 |
+
# آرتیفکت خروجی نمونه (اختیاری ولی مفید برای ارزیابی کیفی)
|
| 101 |
+
outp = f"/tmp/gb_out_{wandb.run.id}.jsonl"
|
| 102 |
+
save_jsonl(rows_out, outp)
|
| 103 |
+
art = wandb.Artifact("gb-sample", type="dataset")
|
| 104 |
+
art.add_file(outp)
|
| 105 |
+
wandb.log_artifact(art)
|
| 106 |
+
|
| 107 |
+
def run_sweep(
|
| 108 |
+
data_path: str,
|
| 109 |
+
text_key: str = DEFAULT_TEXT_KEY,
|
| 110 |
+
max_samples: int = 120,
|
| 111 |
+
batch_size: int = 2,
|
| 112 |
+
project: str = "mahoon-legal-ai",
|
| 113 |
+
entity: str = None,
|
| 114 |
+
count: int = 16
|
| 115 |
+
):
|
| 116 |
+
os.environ.setdefault("WANDB_PROJECT", project)
|
| 117 |
+
if entity: os.environ.setdefault("WANDB_ENTITY", entity)
|
| 118 |
+
|
| 119 |
+
# ایجاد Sweep
|
| 120 |
+
sweep_id = wandb.sweep(SWEEP_CONFIG, project=os.getenv("WANDB_PROJECT", project), entity=os.getenv("WANDB_ENTITY", entity))
|
| 121 |
+
|
| 122 |
+
def _agent():
|
| 123 |
+
wandb.init(project=os.getenv("WANDB_PROJECT", project),
|
| 124 |
+
entity=os.getenv("WANDB_ENTITY", entity),
|
| 125 |
+
name="weights-tune")
|
| 126 |
+
run_once(data_path=data_path, text_key=text_key, max_samples=max_samples, batch_size=batch_size)
|
| 127 |
+
|
| 128 |
+
# اجرای تعداد مشخصی Agent-run
|
| 129 |
+
wandb.agent(sweep_id, function=_agent, count=count)
|
| 130 |
+
|
| 131 |
+
if __name__ == "__main__":
|
| 132 |
+
# اجرای خط فرمان/محلی:
|
| 133 |
+
# export WANDB_API_KEY=<توکن واقعی>
|
| 134 |
+
# python weights_sweep.py
|
| 135 |
+
data = os.getenv("TUNE_DATA", "./sample.jsonl")
|
| 136 |
+
text_key = os.getenv("TUNE_TEXT_KEY", DEFAULT_TEXT_KEY)
|
| 137 |
+
max_samples = int(os.getenv("TUNE_MAX_SAMPLES", "120"))
|
| 138 |
+
count = int(os.getenv("TUNE_COUNT", "16"))
|
| 139 |
+
batch_size = int(os.getenv("TUNE_BATCH", "2"))
|
| 140 |
+
project = os.getenv("WANDB_PROJECT", "mahoon-legal-ai")
|
| 141 |
+
entity = os.getenv("WANDB_ENTITY", None)
|
| 142 |
+
|
| 143 |
+
run_sweep(
|
| 144 |
+
data_path=data,
|
| 145 |
+
text_key=text_key,
|
| 146 |
+
max_samples=max_samples,
|
| 147 |
+
batch_size=batch_size,
|
| 148 |
+
project=project,
|
| 149 |
+
entity=entity,
|
| 150 |
+
count=count
|
| 151 |
+
)
|