Spaces:
Build error
Build error
Add rhyme_generator.py
Browse files- app.py +3 -176
- rhyme_with_ai/__init__.py +0 -0
- rhyme_with_ai/rhyme_generator.py +183 -0
app.py
CHANGED
|
@@ -2,13 +2,12 @@ import copy
|
|
| 2 |
import logging
|
| 3 |
from typing import List
|
| 4 |
|
| 5 |
-
import numpy as np
|
| 6 |
-
import tensorflow as tf
|
| 7 |
import streamlit as st
|
| 8 |
from transformers import BertTokenizer, TFAutoModelForMaskedLM
|
| 9 |
-
|
| 10 |
-
from rhyme_with_ai.
|
| 11 |
from rhyme_with_ai.rhyme import query_rhyme_words
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
DEFAULT_QUERY = "Machines will take over the world soon"
|
|
@@ -99,178 +98,6 @@ def display_output(status_text, query, current_sentences, previous_sentences):
|
|
| 99 |
)
|
| 100 |
|
| 101 |
|
| 102 |
-
class RhymeGenerator:
|
| 103 |
-
def __init__(
|
| 104 |
-
self,
|
| 105 |
-
model: TFAutoModelForMaskedLM,
|
| 106 |
-
tokenizer: BertTokenizer,
|
| 107 |
-
token_weighter: TokenWeighter = None,
|
| 108 |
-
):
|
| 109 |
-
"""Generate rhymes.
|
| 110 |
-
|
| 111 |
-
Parameters
|
| 112 |
-
----------
|
| 113 |
-
model : Model for masked language modelling
|
| 114 |
-
tokenizer : Tokenizer for model
|
| 115 |
-
token_weighter : Class that weighs tokens
|
| 116 |
-
"""
|
| 117 |
-
|
| 118 |
-
self.model = model
|
| 119 |
-
self.tokenizer = tokenizer
|
| 120 |
-
if token_weighter is None:
|
| 121 |
-
token_weighter = TokenWeighter(tokenizer)
|
| 122 |
-
self.token_weighter = token_weighter
|
| 123 |
-
self._logger = logging.getLogger(__name__)
|
| 124 |
-
|
| 125 |
-
self.tokenized_rhymes_ = None
|
| 126 |
-
self.position_probas_ = None
|
| 127 |
-
|
| 128 |
-
# Easy access.
|
| 129 |
-
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
|
| 130 |
-
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
|
| 131 |
-
self.mask_token_id = self.tokenizer.mask_token_id
|
| 132 |
-
|
| 133 |
-
def start(self, query: str, rhyme_words: List[str]) -> None:
|
| 134 |
-
"""Start the sentence generator.
|
| 135 |
-
|
| 136 |
-
Parameters
|
| 137 |
-
----------
|
| 138 |
-
query : Seed sentence
|
| 139 |
-
rhyme_words : Rhyme words for next sentence
|
| 140 |
-
"""
|
| 141 |
-
# TODO: What if no content?
|
| 142 |
-
self._logger.info("Got sentence %s", query)
|
| 143 |
-
tokenized_rhymes = [
|
| 144 |
-
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
|
| 145 |
-
]
|
| 146 |
-
# Make same length.
|
| 147 |
-
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
|
| 148 |
-
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
|
| 149 |
-
)
|
| 150 |
-
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
|
| 151 |
-
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
|
| 152 |
-
|
| 153 |
-
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
|
| 154 |
-
"""Initialize the rhymes.
|
| 155 |
-
|
| 156 |
-
* Tokenize input
|
| 157 |
-
* Append a comma if the sentence does not end in it (might add better predictions as it
|
| 158 |
-
shows the two sentence parts are related)
|
| 159 |
-
* Make second line as long as the original
|
| 160 |
-
* Add a period
|
| 161 |
-
|
| 162 |
-
Parameters
|
| 163 |
-
----------
|
| 164 |
-
query : First line
|
| 165 |
-
rhyme_word : Last word for second line
|
| 166 |
-
|
| 167 |
-
Returns
|
| 168 |
-
-------
|
| 169 |
-
Tokenized rhyme lines
|
| 170 |
-
"""
|
| 171 |
-
|
| 172 |
-
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
|
| 173 |
-
rhyme_word_token_ids = self.tokenizer.encode(
|
| 174 |
-
rhyme_word, add_special_tokens=False
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
if query_token_ids[-1] != self.comma_token_id:
|
| 178 |
-
query_token_ids.append(self.comma_token_id)
|
| 179 |
-
|
| 180 |
-
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
|
| 181 |
-
return (
|
| 182 |
-
query_token_ids
|
| 183 |
-
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
|
| 184 |
-
+ rhyme_word_token_ids
|
| 185 |
-
+ [self.period_token_id]
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
def mutate(self):
|
| 189 |
-
"""Mutate the current rhymes.
|
| 190 |
-
|
| 191 |
-
Returns
|
| 192 |
-
-------
|
| 193 |
-
Mutated rhymes
|
| 194 |
-
"""
|
| 195 |
-
self.tokenized_rhymes_ = self._mutate(
|
| 196 |
-
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
rhymes = []
|
| 200 |
-
for i in range(len(self.tokenized_rhymes_)):
|
| 201 |
-
rhymes.append(
|
| 202 |
-
self.tokenizer.convert_tokens_to_string(
|
| 203 |
-
self.tokenizer.convert_ids_to_tokens(
|
| 204 |
-
self.tokenized_rhymes_[i], skip_special_tokens=True
|
| 205 |
-
)
|
| 206 |
-
)
|
| 207 |
-
)
|
| 208 |
-
return rhymes
|
| 209 |
-
|
| 210 |
-
def _mutate(
|
| 211 |
-
self,
|
| 212 |
-
tokenized_rhymes: np.ndarray,
|
| 213 |
-
position_probas: np.ndarray,
|
| 214 |
-
token_id_probas: np.ndarray,
|
| 215 |
-
) -> np.ndarray:
|
| 216 |
-
|
| 217 |
-
replacements = []
|
| 218 |
-
for i in range(tokenized_rhymes.shape[0]):
|
| 219 |
-
mask_idx, masked_token_ids = self._mask_token(
|
| 220 |
-
tokenized_rhymes[i], position_probas[i]
|
| 221 |
-
)
|
| 222 |
-
tokenized_rhymes[i] = masked_token_ids
|
| 223 |
-
replacements.append(mask_idx)
|
| 224 |
-
|
| 225 |
-
predictions = self._predict_masked_tokens(tokenized_rhymes)
|
| 226 |
-
|
| 227 |
-
for i, token_ids in enumerate(tokenized_rhymes):
|
| 228 |
-
replace_ix = replacements[i]
|
| 229 |
-
token_ids[replace_ix] = self._draw_replacement(
|
| 230 |
-
predictions[i], token_id_probas, replace_ix
|
| 231 |
-
)
|
| 232 |
-
tokenized_rhymes[i] = token_ids
|
| 233 |
-
|
| 234 |
-
return tokenized_rhymes
|
| 235 |
-
|
| 236 |
-
def _mask_token(self, token_ids, position_probas):
|
| 237 |
-
"""Mask line and return index to update."""
|
| 238 |
-
token_ids = self._mask_repeats(token_ids, position_probas)
|
| 239 |
-
ix = self._locate_mask(token_ids, position_probas)
|
| 240 |
-
token_ids[ix] = self.mask_token_id
|
| 241 |
-
return ix, token_ids
|
| 242 |
-
|
| 243 |
-
def _locate_mask(self, token_ids, position_probas):
|
| 244 |
-
"""Update masks or a random token."""
|
| 245 |
-
if self.mask_token_id in token_ids:
|
| 246 |
-
# Already masks present, just return the last.
|
| 247 |
-
# We used to return thee first but this returns worse predictions.
|
| 248 |
-
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
|
| 249 |
-
return np.random.choice(range(len(position_probas)), p=position_probas)
|
| 250 |
-
|
| 251 |
-
def _mask_repeats(self, token_ids, position_probas):
|
| 252 |
-
"""Repeated tokens are generally of less quality."""
|
| 253 |
-
repeats = [
|
| 254 |
-
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
|
| 255 |
-
]
|
| 256 |
-
for ii in repeats:
|
| 257 |
-
if position_probas[ii] > 0:
|
| 258 |
-
token_ids[ii] = self.mask_token_id
|
| 259 |
-
if position_probas[ii + 1] > 0:
|
| 260 |
-
token_ids[ii + 1] = self.mask_token_id
|
| 261 |
-
return token_ids
|
| 262 |
-
|
| 263 |
-
def _predict_masked_tokens(self, tokenized_rhymes):
|
| 264 |
-
return self.model(tf.constant(tokenized_rhymes))[0]
|
| 265 |
-
|
| 266 |
-
def _draw_replacement(self, predictions, token_probas, replace_ix):
|
| 267 |
-
"""Get probability, weigh and draw."""
|
| 268 |
-
# TODO (HG): Can't we softmax when calling the model?
|
| 269 |
-
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
|
| 270 |
-
probas /= probas.sum()
|
| 271 |
-
return np.random.choice(range(len(probas)), p=probas)
|
| 272 |
-
|
| 273 |
-
|
| 274 |
|
| 275 |
if __name__ == "__main__":
|
| 276 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 2 |
import logging
|
| 3 |
from typing import List
|
| 4 |
|
|
|
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
from transformers import BertTokenizer, TFAutoModelForMaskedLM
|
| 7 |
+
|
| 8 |
+
from rhyme_with_ai.utils import color_new_words, sanitize
|
| 9 |
from rhyme_with_ai.rhyme import query_rhyme_words
|
| 10 |
+
from rhyme_with_ai.rhyme_generator import RhymeGenerator
|
| 11 |
|
| 12 |
|
| 13 |
DEFAULT_QUERY = "Machines will take over the world soon"
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
logging.basicConfig(level=logging.INFO)
|
rhyme_with_ai/__init__.py
ADDED
|
File without changes
|
rhyme_with_ai/rhyme_generator.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
from transformers import BertTokenizer, TFAutoModelForMaskedLM
|
| 7 |
+
|
| 8 |
+
from rhyme_with_ai.token_weighter import TokenWeighter
|
| 9 |
+
from rhyme_with_ai.utils import pairwise
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class RhymeGenerator:
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
model: TFAutoModelForMaskedLM,
|
| 16 |
+
tokenizer: BertTokenizer,
|
| 17 |
+
token_weighter: TokenWeighter = None,
|
| 18 |
+
):
|
| 19 |
+
"""Generate rhymes.
|
| 20 |
+
|
| 21 |
+
Parameters
|
| 22 |
+
----------
|
| 23 |
+
model : Model for masked language modelling
|
| 24 |
+
tokenizer : Tokenizer for model
|
| 25 |
+
token_weighter : Class that weighs tokens
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
self.model = model
|
| 29 |
+
self.tokenizer = tokenizer
|
| 30 |
+
if token_weighter is None:
|
| 31 |
+
token_weighter = TokenWeighter(tokenizer)
|
| 32 |
+
self.token_weighter = token_weighter
|
| 33 |
+
self._logger = logging.getLogger(__name__)
|
| 34 |
+
|
| 35 |
+
self.tokenized_rhymes_ = None
|
| 36 |
+
self.position_probas_ = None
|
| 37 |
+
|
| 38 |
+
# Easy access.
|
| 39 |
+
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
|
| 40 |
+
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
|
| 41 |
+
self.mask_token_id = self.tokenizer.mask_token_id
|
| 42 |
+
|
| 43 |
+
def start(self, query: str, rhyme_words: List[str]) -> None:
|
| 44 |
+
"""Start the sentence generator.
|
| 45 |
+
|
| 46 |
+
Parameters
|
| 47 |
+
----------
|
| 48 |
+
query : Seed sentence
|
| 49 |
+
rhyme_words : Rhyme words for next sentence
|
| 50 |
+
"""
|
| 51 |
+
# TODO: What if no content?
|
| 52 |
+
self._logger.info("Got sentence %s", query)
|
| 53 |
+
tokenized_rhymes = [
|
| 54 |
+
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
|
| 55 |
+
]
|
| 56 |
+
# Make same length.
|
| 57 |
+
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
|
| 58 |
+
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
|
| 59 |
+
)
|
| 60 |
+
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
|
| 61 |
+
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
|
| 62 |
+
|
| 63 |
+
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
|
| 64 |
+
"""Initialize the rhymes.
|
| 65 |
+
|
| 66 |
+
* Tokenize input
|
| 67 |
+
* Append a comma if the sentence does not end in it (might add better predictions as it
|
| 68 |
+
shows the two sentence parts are related)
|
| 69 |
+
* Make second line as long as the original
|
| 70 |
+
* Add a period
|
| 71 |
+
|
| 72 |
+
Parameters
|
| 73 |
+
----------
|
| 74 |
+
query : First line
|
| 75 |
+
rhyme_word : Last word for second line
|
| 76 |
+
|
| 77 |
+
Returns
|
| 78 |
+
-------
|
| 79 |
+
Tokenized rhyme lines
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
|
| 83 |
+
rhyme_word_token_ids = self.tokenizer.encode(
|
| 84 |
+
rhyme_word, add_special_tokens=False
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
if query_token_ids[-1] != self.comma_token_id:
|
| 88 |
+
query_token_ids.append(self.comma_token_id)
|
| 89 |
+
|
| 90 |
+
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
|
| 91 |
+
return (
|
| 92 |
+
query_token_ids
|
| 93 |
+
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
|
| 94 |
+
+ rhyme_word_token_ids
|
| 95 |
+
+ [self.period_token_id]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
def mutate(self):
|
| 99 |
+
"""Mutate the current rhymes.
|
| 100 |
+
|
| 101 |
+
Returns
|
| 102 |
+
-------
|
| 103 |
+
Mutated rhymes
|
| 104 |
+
"""
|
| 105 |
+
self.tokenized_rhymes_ = self._mutate(
|
| 106 |
+
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
rhymes = []
|
| 110 |
+
for i in range(len(self.tokenized_rhymes_)):
|
| 111 |
+
rhymes.append(
|
| 112 |
+
self.tokenizer.convert_tokens_to_string(
|
| 113 |
+
self.tokenizer.convert_ids_to_tokens(
|
| 114 |
+
self.tokenized_rhymes_[i], skip_special_tokens=True
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
)
|
| 118 |
+
return rhymes
|
| 119 |
+
|
| 120 |
+
def _mutate(
|
| 121 |
+
self,
|
| 122 |
+
tokenized_rhymes: np.ndarray,
|
| 123 |
+
position_probas: np.ndarray,
|
| 124 |
+
token_id_probas: np.ndarray,
|
| 125 |
+
) -> np.ndarray:
|
| 126 |
+
|
| 127 |
+
replacements = []
|
| 128 |
+
for i in range(tokenized_rhymes.shape[0]):
|
| 129 |
+
mask_idx, masked_token_ids = self._mask_token(
|
| 130 |
+
tokenized_rhymes[i], position_probas[i]
|
| 131 |
+
)
|
| 132 |
+
tokenized_rhymes[i] = masked_token_ids
|
| 133 |
+
replacements.append(mask_idx)
|
| 134 |
+
|
| 135 |
+
predictions = self._predict_masked_tokens(tokenized_rhymes)
|
| 136 |
+
|
| 137 |
+
for i, token_ids in enumerate(tokenized_rhymes):
|
| 138 |
+
replace_ix = replacements[i]
|
| 139 |
+
token_ids[replace_ix] = self._draw_replacement(
|
| 140 |
+
predictions[i], token_id_probas, replace_ix
|
| 141 |
+
)
|
| 142 |
+
tokenized_rhymes[i] = token_ids
|
| 143 |
+
|
| 144 |
+
return tokenized_rhymes
|
| 145 |
+
|
| 146 |
+
def _mask_token(self, token_ids, position_probas):
|
| 147 |
+
"""Mask line and return index to update."""
|
| 148 |
+
token_ids = self._mask_repeats(token_ids, position_probas)
|
| 149 |
+
ix = self._locate_mask(token_ids, position_probas)
|
| 150 |
+
token_ids[ix] = self.mask_token_id
|
| 151 |
+
return ix, token_ids
|
| 152 |
+
|
| 153 |
+
def _locate_mask(self, token_ids, position_probas):
|
| 154 |
+
"""Update masks or a random token."""
|
| 155 |
+
if self.mask_token_id in token_ids:
|
| 156 |
+
# Already masks present, just return the last.
|
| 157 |
+
# We used to return thee first but this returns worse predictions.
|
| 158 |
+
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
|
| 159 |
+
return np.random.choice(range(len(position_probas)), p=position_probas)
|
| 160 |
+
|
| 161 |
+
def _mask_repeats(self, token_ids, position_probas):
|
| 162 |
+
"""Repeated tokens are generally of less quality."""
|
| 163 |
+
repeats = [
|
| 164 |
+
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
|
| 165 |
+
]
|
| 166 |
+
for ii in repeats:
|
| 167 |
+
if position_probas[ii] > 0:
|
| 168 |
+
token_ids[ii] = self.mask_token_id
|
| 169 |
+
if position_probas[ii + 1] > 0:
|
| 170 |
+
token_ids[ii + 1] = self.mask_token_id
|
| 171 |
+
return token_ids
|
| 172 |
+
|
| 173 |
+
def _predict_masked_tokens(self, tokenized_rhymes):
|
| 174 |
+
return self.model(tf.constant(tokenized_rhymes))[0]
|
| 175 |
+
|
| 176 |
+
def _draw_replacement(self, predictions, token_probas, replace_ix):
|
| 177 |
+
"""Get probability, weigh and draw."""
|
| 178 |
+
# TODO (HG): Can't we softmax when calling the model?
|
| 179 |
+
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
|
| 180 |
+
probas /= probas.sum()
|
| 181 |
+
return np.random.choice(range(len(probas)), p=probas)
|
| 182 |
+
|
| 183 |
+
|