Spaces:
Runtime error
Runtime error
Ceyda Cinarel
commited on
Commit
·
cb5f8d1
1
Parent(s):
e122c50
add logo and menus
Browse files- app.py +51 -40
- assets/logo.png +0 -0
- assets/training_data_lowres.png +0 -0
app.py
CHANGED
|
@@ -4,22 +4,19 @@ from demo import load_model,generate,get_dataset,embed
|
|
| 4 |
|
| 5 |
# TODOs
|
| 6 |
# Add markdown short readme project intro
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
st.title("ButterflyGAN")
|
| 14 |
-
st.write("## This butterfly does not exist! ")
|
| 15 |
st.write("Demo prep still in progress!!")
|
| 16 |
|
|
|
|
| 17 |
@st.experimental_singleton
|
| 18 |
def load_model_intocache(model_name):
|
| 19 |
|
| 20 |
# model_name='ceyda/butterfly_512_base'
|
| 21 |
gan = load_model(model_name)
|
| 22 |
-
|
| 23 |
return gan
|
| 24 |
|
| 25 |
@st.experimental_singleton
|
|
@@ -31,37 +28,51 @@ model_name='ceyda/butterfly_cropped_uniq1K_512'
|
|
| 31 |
model=load_model_intocache(model_name)
|
| 32 |
dataset=load_dataset()
|
| 33 |
|
| 34 |
-
st.
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
st.session_state['ims'] = None
|
| 39 |
-
|
| 40 |
-
ims=st.session_state["ims"]
|
| 41 |
-
batch_size=4 #generate 4 butterflies
|
| 42 |
-
def run():
|
| 43 |
-
with st.spinner("Generating..."):
|
| 44 |
-
ims=generate(model,batch_size)
|
| 45 |
-
st.session_state['ims'] = ims
|
| 46 |
-
|
| 47 |
-
runb=st.button("Generate", on_click=run)
|
| 48 |
-
if ims is not None:
|
| 49 |
-
cols=st.columns(batch_size)
|
| 50 |
-
picks=[False]*batch_size
|
| 51 |
-
for i,im in enumerate(ims):
|
| 52 |
-
cols[i].image(im)
|
| 53 |
-
picks[i]=cols[i].button("Find Nearest",key="pick_"+str(i))
|
| 54 |
-
# if picks[i]:
|
| 55 |
-
# scores, retrieved_examples=dataset.get_nearest_examples('beit_embeddings', embed(im), k=5)
|
| 56 |
-
# for r in retrieved_examples["image"]:
|
| 57 |
-
# st.image(r)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# TODOs
|
| 6 |
# Add markdown short readme project intro
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
st.sidebar.image("assets/logo.png", use_column_width=True)
|
| 10 |
+
st.header("ButterflyGAN")
|
| 11 |
+
st.caption("This butterfly does not exist! ")
|
|
|
|
|
|
|
|
|
|
| 12 |
st.write("Demo prep still in progress!!")
|
| 13 |
|
| 14 |
+
|
| 15 |
@st.experimental_singleton
|
| 16 |
def load_model_intocache(model_name):
|
| 17 |
|
| 18 |
# model_name='ceyda/butterfly_512_base'
|
| 19 |
gan = load_model(model_name)
|
|
|
|
| 20 |
return gan
|
| 21 |
|
| 22 |
@st.experimental_singleton
|
|
|
|
| 28 |
model=load_model_intocache(model_name)
|
| 29 |
dataset=load_dataset()
|
| 30 |
|
| 31 |
+
screen = st.sidebar.radio("Pick a destination",["Make butterflies","Take a latent walk", "See the data mosaic"])
|
| 32 |
+
|
| 33 |
+
if screen == "Make butterflies":
|
| 34 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
|
| 37 |
+
if 'ims' not in st.session_state:
|
| 38 |
+
st.session_state['ims'] = None
|
| 39 |
+
|
| 40 |
+
ims=st.session_state["ims"]
|
| 41 |
+
batch_size=4 #generate 4 butterflies
|
| 42 |
+
def run():
|
| 43 |
+
with st.spinner("Generating..."):
|
| 44 |
+
ims=generate(model,batch_size)
|
| 45 |
+
st.session_state['ims'] = ims
|
| 46 |
+
|
| 47 |
+
runb=st.button("Generate", on_click=run)
|
| 48 |
+
if ims is not None:
|
| 49 |
+
cols=st.columns(batch_size)
|
| 50 |
+
picks=[False]*batch_size
|
| 51 |
+
for i,im in enumerate(ims):
|
| 52 |
+
cols[i].image(im)
|
| 53 |
+
picks[i]=cols[i].button("Find Nearest",key="pick_"+str(i))
|
| 54 |
+
# if picks[i]:
|
| 55 |
+
# scores, retrieved_examples=dataset.get_nearest_examples('beit_embeddings', embed(im), k=5)
|
| 56 |
+
# for r in retrieved_examples["image"]:
|
| 57 |
+
# st.image(r)
|
| 58 |
+
|
| 59 |
+
if any(picks):
|
| 60 |
+
# st.write("Nearest butterflies:")
|
| 61 |
+
for i,pick in enumerate(picks):
|
| 62 |
+
if pick:
|
| 63 |
+
scores, retrieved_examples=dataset.get_nearest_examples('beit_embeddings', embed(ims[i]), k=5)
|
| 64 |
+
for r in retrieved_examples["image"]:
|
| 65 |
+
cols[i].image(r)
|
| 66 |
+
|
| 67 |
+
st.write(f"Latent dimension: {model.latent_dim}, Image size:{model.image_size}")
|
| 68 |
+
|
| 69 |
+
elif screen == "Take a latent walk":
|
| 70 |
+
st.write("Take a latent walk")
|
| 71 |
+
|
| 72 |
+
elif screen == "Input data mosaic":
|
| 73 |
+
st.markdown("Todo add explanation about data")
|
| 74 |
+
st.image("assets/training_data_lowres.png")
|
| 75 |
|
| 76 |
|
| 77 |
+
# footer stuff
|
| 78 |
+
st.sidebar.info(f"Model {model_name} is loaded")
|
assets/logo.png
ADDED
|
assets/training_data_lowres.png
ADDED
|