|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | sys.path.append(os.path.abspath('./modules')) | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import tempfile | 
					
						
						|  | import gradio | 
					
						
						|  | import torch | 
					
						
						|  | import spaces | 
					
						
						|  | import numpy as np | 
					
						
						|  | import functools | 
					
						
						|  | import trimesh | 
					
						
						|  | import copy | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from scipy.spatial.transform import Rotation | 
					
						
						|  |  | 
					
						
						|  | from modules.pe3r.images import Images | 
					
						
						|  |  | 
					
						
						|  | from modules.dust3r.inference import inference | 
					
						
						|  | from modules.dust3r.image_pairs import make_pairs | 
					
						
						|  | from modules.dust3r.utils.image import load_images | 
					
						
						|  | from modules.dust3r.utils.device import to_numpy | 
					
						
						|  | from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes | 
					
						
						|  | from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode | 
					
						
						|  | from copy import deepcopy | 
					
						
						|  | import cv2 | 
					
						
						|  | from typing import Any, Dict, Generator,List | 
					
						
						|  | import matplotlib.pyplot as pl | 
					
						
						|  |  | 
					
						
						|  | from modules.mobilesamv2.utils.transforms import ResizeLongestSide | 
					
						
						|  | from modules.pe3r.models import Models | 
					
						
						|  | import torchvision.transforms as tvf | 
					
						
						|  |  | 
					
						
						|  | sys.path.append(os.path.abspath('./modules/ultralytics')) | 
					
						
						|  |  | 
					
						
						|  | from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel | 
					
						
						|  | from modules.mast3r.model import AsymmetricMASt3R | 
					
						
						|  |  | 
					
						
						|  | from modules.sam2.build_sam import build_sam2_video_predictor | 
					
						
						|  | from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel | 
					
						
						|  | from modules.mobilesamv2 import sam_model_registry | 
					
						
						|  |  | 
					
						
						|  | from sam2.sam2_video_predictor import SAM2VideoPredictor | 
					
						
						|  | from modules.mast3r.model import AsymmetricMASt3R | 
					
						
						|  |  | 
					
						
						|  | from torch.nn.functional import cosine_similarity | 
					
						
						|  |  | 
					
						
						|  | silent = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, | 
					
						
						|  | cam_color=None, as_pointcloud=False, | 
					
						
						|  | transparent_cams=False): | 
					
						
						|  | assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) | 
					
						
						|  | pts3d = to_numpy(pts3d) | 
					
						
						|  | imgs = to_numpy(imgs) | 
					
						
						|  | focals = to_numpy(focals) | 
					
						
						|  | cams2world = to_numpy(cams2world) | 
					
						
						|  |  | 
					
						
						|  | scene = trimesh.Scene() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if as_pointcloud: | 
					
						
						|  | pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) | 
					
						
						|  | col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) | 
					
						
						|  | pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) | 
					
						
						|  | scene.add_geometry(pct) | 
					
						
						|  | else: | 
					
						
						|  | meshes = [] | 
					
						
						|  | for i in range(len(imgs)): | 
					
						
						|  | meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) | 
					
						
						|  | mesh = trimesh.Trimesh(**cat_meshes(meshes)) | 
					
						
						|  | scene.add_geometry(mesh) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i, pose_c2w in enumerate(cams2world): | 
					
						
						|  | if isinstance(cam_color, list): | 
					
						
						|  | camera_edge_color = cam_color[i] | 
					
						
						|  | else: | 
					
						
						|  | camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] | 
					
						
						|  | add_scene_cam(scene, pose_c2w, camera_edge_color, | 
					
						
						|  | None if transparent_cams else imgs[i], focals[i], | 
					
						
						|  | imsize=imgs[i].shape[1::-1], screen_width=cam_size) | 
					
						
						|  |  | 
					
						
						|  | rot = np.eye(4) | 
					
						
						|  | rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() | 
					
						
						|  | scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) | 
					
						
						|  | outfile = os.path.join(outdir, 'scene.glb') | 
					
						
						|  | if not silent: | 
					
						
						|  | print('(exporting 3D scene to', outfile, ')') | 
					
						
						|  | scene.export(file_obj=outfile) | 
					
						
						|  | return outfile | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, | 
					
						
						|  | clean_depth=False, transparent_cams=False, cam_size=0.05): | 
					
						
						|  | """ | 
					
						
						|  | extract 3D_model (glb file) from a reconstructed scene | 
					
						
						|  | """ | 
					
						
						|  | if scene is None: | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | if clean_depth: | 
					
						
						|  | scene = scene.clean_pointcloud() | 
					
						
						|  | if mask_sky: | 
					
						
						|  | scene = scene.mask_sky() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rgbimg = scene.ori_imgs | 
					
						
						|  | focals = scene.get_focals().cpu() | 
					
						
						|  | cams2world = scene.get_im_poses().cpu() | 
					
						
						|  |  | 
					
						
						|  | pts3d = to_numpy(scene.get_pts3d()) | 
					
						
						|  | scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) | 
					
						
						|  | msk = to_numpy(scene.get_masks()) | 
					
						
						|  | return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, | 
					
						
						|  | transparent_cams=transparent_cams, cam_size=cam_size) | 
					
						
						|  |  | 
					
						
						|  | def mask_nms(masks, threshold=0.8): | 
					
						
						|  | keep = [] | 
					
						
						|  | mask_num = len(masks) | 
					
						
						|  | suppressed = np.zeros((mask_num), dtype=np.int64) | 
					
						
						|  | for i in range(mask_num): | 
					
						
						|  | if suppressed[i] == 1: | 
					
						
						|  | continue | 
					
						
						|  | keep.append(i) | 
					
						
						|  | for j in range(i + 1, mask_num): | 
					
						
						|  | if suppressed[j] == 1: | 
					
						
						|  | continue | 
					
						
						|  | intersection = (masks[i] & masks[j]).sum() | 
					
						
						|  | if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold: | 
					
						
						|  | suppressed[j] = 1 | 
					
						
						|  | return keep | 
					
						
						|  |  | 
					
						
						|  | def filter(masks, keep): | 
					
						
						|  | ret = [] | 
					
						
						|  | for i, m in enumerate(masks): | 
					
						
						|  | if i in keep: ret.append(m) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def mask_to_box(mask): | 
					
						
						|  | if mask.sum() == 0: | 
					
						
						|  | return np.array([0, 0, 0, 0]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rows = np.any(mask, axis=1) | 
					
						
						|  | cols = np.any(mask, axis=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | top = np.argmax(rows) | 
					
						
						|  | bottom = len(rows) - 1 - np.argmax(np.flip(rows)) | 
					
						
						|  | left = np.argmax(cols) | 
					
						
						|  | right = len(cols) - 1 - np.argmax(np.flip(cols)) | 
					
						
						|  |  | 
					
						
						|  | return np.array([left, top, right, bottom]) | 
					
						
						|  |  | 
					
						
						|  | def box_xyxy_to_xywh(box_xyxy): | 
					
						
						|  | box_xywh = deepcopy(box_xyxy) | 
					
						
						|  | box_xywh[2] = box_xywh[2] - box_xywh[0] | 
					
						
						|  | box_xywh[3] = box_xywh[3] - box_xywh[1] | 
					
						
						|  | return box_xywh | 
					
						
						|  |  | 
					
						
						|  | def get_seg_img(mask, box, image): | 
					
						
						|  | image = image.copy() | 
					
						
						|  | x, y, w, h = box | 
					
						
						|  |  | 
					
						
						|  | box_area = w * h | 
					
						
						|  | mask_area = mask.sum() | 
					
						
						|  | if 1 - (mask_area / box_area) < 0.2: | 
					
						
						|  | image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8) | 
					
						
						|  | else: | 
					
						
						|  | random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8) | 
					
						
						|  | image[mask == 0] = random_values[mask == 0] | 
					
						
						|  | seg_img = image[y:y+h, x:x+w, ...] | 
					
						
						|  | return seg_img | 
					
						
						|  |  | 
					
						
						|  | def pad_img(img): | 
					
						
						|  | h, w, _ = img.shape | 
					
						
						|  | l = max(w,h) | 
					
						
						|  | pad = np.zeros((l,l,3), dtype=np.uint8) | 
					
						
						|  | if h > w: | 
					
						
						|  | pad[:,(h-w)//2:(h-w)//2 + w, :] = img | 
					
						
						|  | else: | 
					
						
						|  | pad[(w-h)//2:(w-h)//2 + h, :, :] = img | 
					
						
						|  | return pad | 
					
						
						|  |  | 
					
						
						|  | def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: | 
					
						
						|  | assert len(args) > 0 and all( | 
					
						
						|  | len(a) == len(args[0]) for a in args | 
					
						
						|  | ), "Batched iteration must have inputs of all the same size." | 
					
						
						|  | n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) | 
					
						
						|  | for b in range(n_batches): | 
					
						
						|  | yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] | 
					
						
						|  |  | 
					
						
						|  | def slerp(u1, u2, t): | 
					
						
						|  | """ | 
					
						
						|  | Perform spherical linear interpolation (Slerp) between two unit vectors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - u1 (torch.Tensor): First unit vector, shape (1024,) | 
					
						
						|  | - u2 (torch.Tensor): Second unit vector, shape (1024,) | 
					
						
						|  | - t (float): Interpolation parameter | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | - torch.Tensor: Interpolated vector, shape (1024,) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | dot_product = torch.sum(u1 * u2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dot_product = torch.clamp(dot_product, -1.0, 1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | theta = torch.acos(dot_product) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sin_theta = torch.sin(theta) | 
					
						
						|  | if sin_theta == 0: | 
					
						
						|  |  | 
					
						
						|  | return u1 + t * (u2 - u1) | 
					
						
						|  |  | 
					
						
						|  | s1 = torch.sin((1 - t) * theta) / sin_theta | 
					
						
						|  | s2 = torch.sin(t * theta) / sin_theta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return s1 * u1 + s2 * u2 | 
					
						
						|  |  | 
					
						
						|  | def slerp_multiple(vectors, t_values): | 
					
						
						|  | """ | 
					
						
						|  | Perform spherical linear interpolation (Slerp) for multiple vectors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024) | 
					
						
						|  | - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,) | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | - torch.Tensor: Interpolated vector, shape (1024,) | 
					
						
						|  | """ | 
					
						
						|  | n = vectors.shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | interpolated_vector = vectors[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(1, n): | 
					
						
						|  |  | 
					
						
						|  | t = t_values[i] / (t_values[i] + t_values[i-1]) | 
					
						
						|  | interpolated_vector = slerp(interpolated_vector, vectors[i], t) | 
					
						
						|  |  | 
					
						
						|  | return interpolated_vector | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad | 
					
						
						|  | def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform): | 
					
						
						|  |  | 
					
						
						|  | device = 'cuda' if torch.cuda.is_available() else 'cpu' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sam_mask=[] | 
					
						
						|  | img_area = original_size[0] * original_size[1] | 
					
						
						|  |  | 
					
						
						|  | obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False) | 
					
						
						|  | input_boxes1 = obj_results[0].boxes.xyxy | 
					
						
						|  | input_boxes1 = input_boxes1.cpu().numpy() | 
					
						
						|  | input_boxes1 = transform.apply_boxes(input_boxes1, original_size) | 
					
						
						|  | input_boxes = torch.from_numpy(input_boxes1).to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_image = mobilesamv2.preprocess(sam1_image) | 
					
						
						|  | image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state'] | 
					
						
						|  |  | 
					
						
						|  | image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0) | 
					
						
						|  | prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe() | 
					
						
						|  | prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0) | 
					
						
						|  | for (boxes,) in batch_iterator(320, input_boxes): | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | image_embedding=image_embedding[0:boxes.shape[0],:,:,:] | 
					
						
						|  | prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:] | 
					
						
						|  | sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder( | 
					
						
						|  | points=None, | 
					
						
						|  | boxes=boxes, | 
					
						
						|  | masks=None,) | 
					
						
						|  | low_res_masks, _ = mobilesamv2.mask_decoder( | 
					
						
						|  | image_embeddings=image_embedding, | 
					
						
						|  | image_pe=prompt_embedding, | 
					
						
						|  | sparse_prompt_embeddings=sparse_embeddings, | 
					
						
						|  | dense_prompt_embeddings=dense_embeddings, | 
					
						
						|  | multimask_output=False, | 
					
						
						|  | simple_type=True, | 
					
						
						|  | ) | 
					
						
						|  | low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size) | 
					
						
						|  | sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold) | 
					
						
						|  | for mask in sam_mask_pre: | 
					
						
						|  | if mask.sum() / img_area > 0.002: | 
					
						
						|  | sam_mask.append(mask.squeeze(1)) | 
					
						
						|  | sam_mask=torch.cat(sam_mask) | 
					
						
						|  | sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True) | 
					
						
						|  | keep = mask_nms(sorted_sam_mask) | 
					
						
						|  | ret_mask = filter(sorted_sam_mask, keep) | 
					
						
						|  |  | 
					
						
						|  | return ret_mask | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad | 
					
						
						|  | def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2): | 
					
						
						|  |  | 
					
						
						|  | device = 'cuda' if torch.cuda.is_available() else 'cpu' | 
					
						
						|  |  | 
					
						
						|  | cog_seg_maps = [] | 
					
						
						|  | rev_cog_seg_maps = [] | 
					
						
						|  | inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1]) | 
					
						
						|  | mask_num = 0 | 
					
						
						|  |  | 
					
						
						|  | sam1_images = images.sam1_images | 
					
						
						|  | sam1_images_size = images.sam1_images_size | 
					
						
						|  | np_images = images.np_images | 
					
						
						|  | np_images_size = images.np_images_size | 
					
						
						|  |  | 
					
						
						|  | sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform) | 
					
						
						|  | for mask in sam1_masks: | 
					
						
						|  | _, _, _ = sam2.add_new_mask( | 
					
						
						|  | inference_state=inference_state, | 
					
						
						|  | frame_idx=0, | 
					
						
						|  | obj_id=mask_num, | 
					
						
						|  | mask=mask, | 
					
						
						|  | ) | 
					
						
						|  | mask_num += 1 | 
					
						
						|  |  | 
					
						
						|  | video_segments = {} | 
					
						
						|  | for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state): | 
					
						
						|  | sam2_masks = (out_mask_logits > 0.0).squeeze(1) | 
					
						
						|  |  | 
					
						
						|  | video_segments[out_frame_idx] = { | 
					
						
						|  | out_obj_id: sam2_masks[i].cpu().numpy() | 
					
						
						|  | for i, out_obj_id in enumerate(out_obj_ids) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if out_frame_idx == 0: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform) | 
					
						
						|  |  | 
					
						
						|  | for sam1_mask in sam1_masks: | 
					
						
						|  | flg = 1 | 
					
						
						|  | for sam2_mask in sam2_masks: | 
					
						
						|  |  | 
					
						
						|  | area1 = sam1_mask.sum() | 
					
						
						|  | area2 = sam2_mask.sum() | 
					
						
						|  | intersection = (sam1_mask & sam2_mask).sum() | 
					
						
						|  | if min(intersection / area1, intersection / area2) > 0.25: | 
					
						
						|  | flg = 0 | 
					
						
						|  | break | 
					
						
						|  | if flg: | 
					
						
						|  | video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy() | 
					
						
						|  | mask_num += 1 | 
					
						
						|  |  | 
					
						
						|  | multi_view_clip_feats = torch.zeros((mask_num+1, 1024)) | 
					
						
						|  | multi_view_clip_feats_map = {} | 
					
						
						|  | multi_view_clip_area_map = {} | 
					
						
						|  | for now_frame in range(0, len(video_segments), 1): | 
					
						
						|  | image = np_images[now_frame] | 
					
						
						|  |  | 
					
						
						|  | seg_img_list = [] | 
					
						
						|  | out_obj_id_list = [] | 
					
						
						|  | out_obj_mask_list = [] | 
					
						
						|  | out_obj_area_list = [] | 
					
						
						|  |  | 
					
						
						|  | rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64) | 
					
						
						|  | sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False) | 
					
						
						|  | for out_obj_id, mask in sorted_dict_items: | 
					
						
						|  | if mask.sum() == 0: | 
					
						
						|  | continue | 
					
						
						|  | rev_seg_map[mask] = out_obj_id | 
					
						
						|  | rev_cog_seg_maps.append(rev_seg_map) | 
					
						
						|  |  | 
					
						
						|  | seg_map = -np.ones(image.shape[:2], dtype=np.int64) | 
					
						
						|  | sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True) | 
					
						
						|  | for out_obj_id, mask in sorted_dict_items: | 
					
						
						|  | if mask.sum() == 0: | 
					
						
						|  | continue | 
					
						
						|  | box = np.int32(box_xyxy_to_xywh(mask_to_box(mask))) | 
					
						
						|  |  | 
					
						
						|  | if box[2] == 0 and box[3] == 0: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | seg_img = get_seg_img(mask, box, image) | 
					
						
						|  | pad_seg_img = cv2.resize(pad_img(seg_img), (256,256)) | 
					
						
						|  | seg_img_list.append(pad_seg_img) | 
					
						
						|  | seg_map[mask] = out_obj_id | 
					
						
						|  | out_obj_id_list.append(out_obj_id) | 
					
						
						|  | out_obj_area_list.append(np.count_nonzero(mask)) | 
					
						
						|  | out_obj_mask_list.append(mask) | 
					
						
						|  |  | 
					
						
						|  | if len(seg_img_list) == 0: | 
					
						
						|  | cog_seg_maps.append(seg_map) | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | seg_imgs = np.stack(seg_img_list, axis=0) | 
					
						
						|  | seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) | 
					
						
						|  |  | 
					
						
						|  | inputs = siglip_processor(images=seg_imgs, return_tensors="pt") | 
					
						
						|  | inputs = {key: value.to(device) for key, value in inputs.items()} | 
					
						
						|  |  | 
					
						
						|  | image_features = siglip.get_image_features(**inputs) | 
					
						
						|  | image_features = image_features / image_features.norm(dim=-1, keepdim=True) | 
					
						
						|  | image_features = image_features.detach().cpu() | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(out_obj_mask_list)): | 
					
						
						|  | for j in range(i + 1, len(out_obj_mask_list)): | 
					
						
						|  | mask1 = out_obj_mask_list[i] | 
					
						
						|  | mask2 = out_obj_mask_list[j] | 
					
						
						|  | intersection = np.logical_and(mask1, mask2).sum() | 
					
						
						|  | area1 = out_obj_area_list[i] | 
					
						
						|  | area2 = out_obj_area_list[j] | 
					
						
						|  | if min(intersection / area1, intersection / area2) > 0.025: | 
					
						
						|  | conf1 = area1 / (area1 + area2) | 
					
						
						|  |  | 
					
						
						|  | image_features[j] = slerp(image_features[j], image_features[i], conf1) | 
					
						
						|  |  | 
					
						
						|  | for i, clip_feat in enumerate(image_features): | 
					
						
						|  | id = out_obj_id_list[i] | 
					
						
						|  | if id in multi_view_clip_feats_map.keys(): | 
					
						
						|  | multi_view_clip_feats_map[id].append(clip_feat) | 
					
						
						|  | multi_view_clip_area_map[id].append(out_obj_area_list[i]) | 
					
						
						|  | else: | 
					
						
						|  | multi_view_clip_feats_map[id] = [clip_feat] | 
					
						
						|  | multi_view_clip_area_map[id] = [out_obj_area_list[i]] | 
					
						
						|  |  | 
					
						
						|  | cog_seg_maps.append(seg_map) | 
					
						
						|  | del image_features | 
					
						
						|  |  | 
					
						
						|  | for i in range(mask_num): | 
					
						
						|  | if i in multi_view_clip_feats_map.keys(): | 
					
						
						|  | clip_feats = multi_view_clip_feats_map[i] | 
					
						
						|  | mask_area = multi_view_clip_area_map[i] | 
					
						
						|  | multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area)) | 
					
						
						|  | else: | 
					
						
						|  | multi_view_clip_feats[i] = torch.zeros((1024)) | 
					
						
						|  | multi_view_clip_feats[mask_num] = torch.zeros((1024)) | 
					
						
						|  |  | 
					
						
						|  | return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Scene_cpu: | 
					
						
						|  | def __init__(self, fix_imgs, cogs, focals, cams2world, pts3d, min_conf_thr, msk): | 
					
						
						|  | self.fix_imgs = fix_imgs | 
					
						
						|  | self.cogs = cogs | 
					
						
						|  | self.focals = focals | 
					
						
						|  | self.cams2world = cams2world | 
					
						
						|  | self.pts3d = pts3d | 
					
						
						|  | self.min_conf_thr = min_conf_thr | 
					
						
						|  | self.msk = msk | 
					
						
						|  |  | 
					
						
						|  | def render_image(self, text_feats, threshold=0.85): | 
					
						
						|  | self.rendered_imgs = [] | 
					
						
						|  |  | 
					
						
						|  | all_similarities = [] | 
					
						
						|  | for each_cog in self.cogs: | 
					
						
						|  | similarity_map = cosine_similarity(each_cog, text_feats.unsqueeze(1), dim=-1) | 
					
						
						|  | all_similarities.append(similarity_map.squeeze().numpy()) | 
					
						
						|  |  | 
					
						
						|  | total_similarities = np.concatenate(all_similarities) | 
					
						
						|  | min_sim, max_sim = total_similarities.min(), total_similarities.max() | 
					
						
						|  | normalized_similarities = [(sim - min_sim) / (max_sim - min_sim) for sim in all_similarities] | 
					
						
						|  |  | 
					
						
						|  | for i, (each_cog, heatmap) in enumerate(zip(self.cogs, normalized_similarities)): | 
					
						
						|  | mask = heatmap > threshold | 
					
						
						|  |  | 
					
						
						|  | heatmap = np.uint8(255 * heatmap) | 
					
						
						|  | heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) | 
					
						
						|  |  | 
					
						
						|  | image = self.fix_imgs[i] | 
					
						
						|  | image = image * 255.0 | 
					
						
						|  | image = np.clip(image, 0, 255).astype(np.uint8) | 
					
						
						|  |  | 
					
						
						|  | mask_indices = np.where(mask) | 
					
						
						|  | heatmap_color[mask_indices[0], mask_indices[1]] = [0, 0, 255] | 
					
						
						|  | superimposed_img = np.where(np.expand_dims(mask, axis=-1), heatmap_color, image) / 255.0 | 
					
						
						|  | self.rendered_imgs.append(superimposed_img) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @spaces.GPU(duration=180) | 
					
						
						|  | def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0, | 
					
						
						|  | as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05, | 
					
						
						|  | scenegraph_type='complete', winsize=1, refid=0): | 
					
						
						|  | """ | 
					
						
						|  | from a list of images, run dust3r inference, global aligner. | 
					
						
						|  | then run get_3D_model_from_scene | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if len(filelist) < 2: | 
					
						
						|  | raise gradio.Error("Please input at least 2 images.") | 
					
						
						|  | if len(filelist) > 8: | 
					
						
						|  | raise gradio.Error("Please input less than 8 images.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = 'cuda' if torch.cuda.is_available() else 'cpu' | 
					
						
						|  |  | 
					
						
						|  | MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' | 
					
						
						|  | mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device) | 
					
						
						|  |  | 
					
						
						|  | sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device) | 
					
						
						|  |  | 
					
						
						|  | siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval() | 
					
						
						|  | siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256") | 
					
						
						|  |  | 
					
						
						|  | SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt' | 
					
						
						|  | mobilesamv2 = sam_model_registry['sam_vit_h'](None) | 
					
						
						|  | sam1 = SamModel.from_pretrained('facebook/sam-vit-huge') | 
					
						
						|  | image_encoder = sam1.vision_encoder | 
					
						
						|  |  | 
					
						
						|  | prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP) | 
					
						
						|  | mobilesamv2.prompt_encoder = prompt_encoder | 
					
						
						|  | mobilesamv2.mask_decoder = mask_decoder | 
					
						
						|  | mobilesamv2.image_encoder=image_encoder | 
					
						
						|  | mobilesamv2.to(device=device) | 
					
						
						|  | mobilesamv2.eval() | 
					
						
						|  |  | 
					
						
						|  | YOLO8_CKP='./checkpoints/ObjectAwareModel.pt' | 
					
						
						|  | yolov8 = ObjectAwareModel(YOLO8_CKP) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | images = Images(filelist=filelist, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2) | 
					
						
						|  | imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(imgs) == 1: | 
					
						
						|  | imgs = [imgs[0], copy.deepcopy(imgs[0])] | 
					
						
						|  | imgs[1]['idx'] = 1 | 
					
						
						|  |  | 
					
						
						|  | if scenegraph_type == "swin": | 
					
						
						|  | scenegraph_type = scenegraph_type + "-" + str(winsize) | 
					
						
						|  | elif scenegraph_type == "oneref": | 
					
						
						|  | scenegraph_type = scenegraph_type + "-" + str(refid) | 
					
						
						|  |  | 
					
						
						|  | pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) | 
					
						
						|  | output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent) | 
					
						
						|  | mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer | 
					
						
						|  | scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) | 
					
						
						|  | lr = 0.01 | 
					
						
						|  |  | 
					
						
						|  | loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | 
					
						
						|  | for i in range(len(imgs)): | 
					
						
						|  |  | 
					
						
						|  | imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None] | 
					
						
						|  | pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) | 
					
						
						|  | output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent) | 
					
						
						|  | mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer | 
					
						
						|  | scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) | 
					
						
						|  | ori_imgs = scene.ori_imgs | 
					
						
						|  | lr = 0.01 | 
					
						
						|  |  | 
					
						
						|  | loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | scene = scene_1 | 
					
						
						|  | scene.imgs = ori_imgs | 
					
						
						|  | scene.ori_imgs = ori_imgs | 
					
						
						|  | print(e) | 
					
						
						|  |  | 
					
						
						|  | outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size) | 
					
						
						|  |  | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | fix_imgs = [] | 
					
						
						|  | for img in scene.fix_imgs: | 
					
						
						|  | fix_imgs.append(img) | 
					
						
						|  | cogs = [] | 
					
						
						|  | for cog in scene.cogs: | 
					
						
						|  | cog_cpu = cog.detach().cpu() | 
					
						
						|  | cogs.append(cog_cpu) | 
					
						
						|  | focals = scene.get_focals().detach().cpu() | 
					
						
						|  | cams2world = scene.get_im_poses().detach().cpu() | 
					
						
						|  | pts3d = to_numpy(scene.get_pts3d()) | 
					
						
						|  | min_conf_thr = float(to_numpy(scene.conf_trf(torch.tensor(3.0)))) | 
					
						
						|  | msk = to_numpy(scene.get_masks()) | 
					
						
						|  | scene_cpu = Scene_cpu(fix_imgs, cogs, focals, cams2world, pts3d, min_conf_thr, msk) | 
					
						
						|  |  | 
					
						
						|  | del scene, scene_1 | 
					
						
						|  |  | 
					
						
						|  | return scene_cpu, outfile | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr=3.0, as_pointcloud=True, | 
					
						
						|  | mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05): | 
					
						
						|  |  | 
					
						
						|  | device = 'cpu' | 
					
						
						|  | siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256") | 
					
						
						|  | siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval() | 
					
						
						|  |  | 
					
						
						|  | texts = [text] | 
					
						
						|  | inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt") | 
					
						
						|  | inputs = {key: value.to(device) for key, value in inputs.items()} | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | text_feats =siglip.get_text_features(**inputs) | 
					
						
						|  | text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True) | 
					
						
						|  | scene.render_image(text_feats, threshold) | 
					
						
						|  | scene.ori_imgs = scene.rendered_imgs | 
					
						
						|  | rgbimg = scene.ori_imgs | 
					
						
						|  | focals = scene.focals | 
					
						
						|  | cams2world = scene.cams2world | 
					
						
						|  |  | 
					
						
						|  | pts3d = scene.pts3d | 
					
						
						|  | msk = scene.msk | 
					
						
						|  | return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, | 
					
						
						|  | transparent_cams=transparent_cams, cam_size=cam_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tmpdirname = tempfile.mkdtemp(suffix='pe3r_gradio_demo') | 
					
						
						|  |  | 
					
						
						|  | recon_fun = functools.partial(get_reconstructed_scene, tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo: | 
					
						
						|  |  | 
					
						
						|  | scene = gradio.State(None) | 
					
						
						|  |  | 
					
						
						|  | gradio.HTML('<h2 style="text-align: center;">PE3R: Perception-Efficient 3D Reconstruction</h2>') | 
					
						
						|  | gradio.HTML('<p style="text-align: center; font-size: 16px;">🪄 Take 2~3 photos with your phone, upload them, wait a few (3~5) minutes, and then start exploring your 3D world via text!<br>' | 
					
						
						|  | '✨ If you like this project, please consider giving us an encouraging star <a href="https://github.com/hujiecpp/PE3R" target="_blank">[github]</a>.</p>') | 
					
						
						|  | with gradio.Column(): | 
					
						
						|  | snapshot = gradio.Image(None, visible=False) | 
					
						
						|  |  | 
					
						
						|  | inputfiles = gradio.File(file_count="multiple", label="Input Images") | 
					
						
						|  |  | 
					
						
						|  | run_btn = gradio.Button("Reconstruct") | 
					
						
						|  |  | 
					
						
						|  | with gradio.Row(): | 
					
						
						|  | text_input = gradio.Textbox(label="Query Text") | 
					
						
						|  | threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01) | 
					
						
						|  |  | 
					
						
						|  | find_btn = gradio.Button("Find") | 
					
						
						|  |  | 
					
						
						|  | outmodel = gradio.Model3D() | 
					
						
						|  |  | 
					
						
						|  | examples = gradio.Examples( | 
					
						
						|  | examples=[ | 
					
						
						|  | ["./examples/1.png", ["./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], "Table", 0.85], | 
					
						
						|  | ["./examples/5.png", ["./examples/5.png", "./examples/6.png", "./examples/7.png", "./examples/8.png"], "Christmas Tree", 0.96], | 
					
						
						|  | ], | 
					
						
						|  | inputs=[snapshot, inputfiles, text_input, threshold], | 
					
						
						|  | label="Example Inputs" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | run_btn.click(fn=recon_fun, | 
					
						
						|  | inputs=[inputfiles], | 
					
						
						|  | outputs=[scene, outmodel]) | 
					
						
						|  |  | 
					
						
						|  | find_btn.click(fn=get_3D_object_from_scene_fun, | 
					
						
						|  | inputs=[text_input, threshold, scene], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | demo.launch(show_error=True, share=None, server_name=None, server_port=None) | 
					
						
						|  |  |