Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
import shutil
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration, BitsAndBytesConfig
|
| 9 |
+
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"
|
| 12 |
+
|
| 13 |
+
quantization_config = BitsAndBytesConfig(
|
| 14 |
+
load_in_4bit=True,
|
| 15 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 16 |
+
bnb_4bit_use_double_quant=True,
|
| 17 |
+
bnb_4bit_quant_type="nf4"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
| 21 |
+
model_id,
|
| 22 |
+
quantization_config=quantization_config,
|
| 23 |
+
low_cpu_mem_usage=True,
|
| 24 |
+
device_map="auto"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
|
| 28 |
+
|
| 29 |
+
def sample_frames(video_path, num_frames):
|
| 30 |
+
output_dir = "/tmp/processed_frames"
|
| 31 |
+
|
| 32 |
+
if os.path.exists(output_dir):
|
| 33 |
+
shutil.rmtree(output_dir)
|
| 34 |
+
os.makedirs(output_dir)
|
| 35 |
+
|
| 36 |
+
video = cv2.VideoCapture(video_path)
|
| 37 |
+
|
| 38 |
+
if not video.isOpened():
|
| 39 |
+
raise ValueError(f"Could not open video file: {video_path}")
|
| 40 |
+
|
| 41 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 42 |
+
interval = max(1, total_frames // num_frames)
|
| 43 |
+
frames = []
|
| 44 |
+
frame_count = 0
|
| 45 |
+
|
| 46 |
+
for i in range(total_frames):
|
| 47 |
+
ret, frame = video.read()
|
| 48 |
+
if not ret:
|
| 49 |
+
continue
|
| 50 |
+
if i % interval == 0 and len(frames) < num_frames:
|
| 51 |
+
cv2.imwrite(f"{output_dir}/frame_{frame_count:03d}.jpg", frame)
|
| 52 |
+
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 53 |
+
frames.append(pil_img)
|
| 54 |
+
frame_count += 1
|
| 55 |
+
|
| 56 |
+
video.release()
|
| 57 |
+
|
| 58 |
+
frame_paths = [f"{output_dir}/frame_{i:03d}.jpg" for i in range(frame_count)]
|
| 59 |
+
|
| 60 |
+
return frames, frame_paths
|
| 61 |
+
|
| 62 |
+
def analyze_video(video_path):
|
| 63 |
+
conversation = [
|
| 64 |
+
{
|
| 65 |
+
"role": "user",
|
| 66 |
+
"content": [
|
| 67 |
+
{"type": "text", "text": "Analyze this gas pipe quality control video. Answer these two questions with True/False: 1) DIPPED IN WATER: Was the pipe dipped in water for testing? Look for pipe being submerged in water container. 2) BUBBLES AFTER IMMERSION: After the pipe was fully immersed (ignore initial displacement bubbles), were there any bubbles indicating a leak? Format: DIPPED IN WATER: True/False, BUBBLES AFTER IMMERSION: True/False"},
|
| 68 |
+
{"type": "video"},
|
| 69 |
+
],
|
| 70 |
+
},
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 74 |
+
|
| 75 |
+
video_frames, frame_paths = sample_frames(video_path, 20)
|
| 76 |
+
|
| 77 |
+
inputs = processor(text=prompt, videos=video_frames, padding=True)
|
| 78 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 79 |
+
|
| 80 |
+
output = model.generate(
|
| 81 |
+
**inputs,
|
| 82 |
+
max_new_tokens=100,
|
| 83 |
+
do_sample=True,
|
| 84 |
+
temperature=0.3,
|
| 85 |
+
top_p=0.9,
|
| 86 |
+
top_k=50,
|
| 87 |
+
repetition_penalty=1.1,
|
| 88 |
+
pad_token_id=processor.tokenizer.eos_token_id
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
result = processor.decode(output[0][2:], skip_special_tokens=True)
|
| 92 |
+
|
| 93 |
+
return frame_paths, result
|
| 94 |
+
|
| 95 |
+
examples = [
|
| 96 |
+
["07.mp4"],
|
| 97 |
+
["09.mp4"],
|
| 98 |
+
["29.mp4"]
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
iface = gr.Interface(
|
| 102 |
+
fn=analyze_video,
|
| 103 |
+
inputs=gr.Video(),
|
| 104 |
+
outputs=[
|
| 105 |
+
gr.Gallery(label="Processed Frames"),
|
| 106 |
+
gr.Textbox(label="LLM Analysis", lines=10)
|
| 107 |
+
],
|
| 108 |
+
title="Gas Pipe Quality Control Analyzer",
|
| 109 |
+
examples=examples,
|
| 110 |
+
cache_examples=False
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
iface.launch(share=True)
|