Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import pandas as pd | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import pairwise_distances | |
| from typing import List, Dict | |
| from utils.config import Config | |
| import os | |
| # Load the dataset (replace with the actual path to your dataset) | |
| dataset_path = Config.read('app', 'dataset') | |
| # Ensure the dataset exists | |
| if not os.path.exists(dataset_path): | |
| raise FileNotFoundError(f"The dataset file at {dataset_path} was not found.") | |
| # Load the dataset | |
| data = pd.read_pickle(dataset_path) | |
| # Ensure the dataset has the necessary columns: 'asin', 'title', 'brand', 'medium_image_url' | |
| required_columns = ['asin', 'title', 'brand', 'medium_image_url'] | |
| for col in required_columns: | |
| if col not in data.columns: | |
| raise ValueError(f"Missing required column: {col} in the dataset") | |
| # Set up the vectorizer and fit the model | |
| tfidf_title_vectorizer = TfidfVectorizer(min_df = 0.0) | |
| tfidf_title_features = tfidf_title_vectorizer.fit_transform(data['title']) | |
| # Function to calculate the tf-idf model and return closest matches | |
| def tfidf_model(input_text: str, num_results: int) -> List[Dict]: | |
| # Transform the input text to the same TF-IDF feature space | |
| query_vec = tfidf_title_vectorizer.transform([input_text]) | |
| pairwise_dist = pairwise_distances(tfidf_title_features, query_vec) | |
| # np.argsort will return indices of 9 smallest distances | |
| indices = np.argsort(pairwise_dist.flatten())[0:num_results] | |
| #data frame indices of the 9 smallest distace's | |
| df_indices = list(data.index[indices]) | |
| results = [] | |
| for i in range(0,len(indices)): | |
| result = { | |
| 'asin': data['asin'].loc[df_indices[i]], | |
| 'brand': data['brand'].loc[df_indices[i]], | |
| 'title': data['title'].loc[df_indices[i]], | |
| 'url': data['medium_image_url'].loc[df_indices[i]] | |
| } | |
| results.append(result) | |
| return results |