Spaces:
Sleeping
Sleeping
File size: 2,071 Bytes
97e0d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import gradio as gr
import torchvision.transforms as transforms
from torchvision.transforms import InterpolationMode
import torch
from huggingface_hub import hf_hub_download
from .model import Model
# Load Model
model_path = hf_hub_download(
repo_id="itserr/exvoto_classifier_convnext_base_224",
filename="model.pt"
)
model = Model('convnext_base')
ckpt = torch.load(model_path, map_location=torch.device("cpu")) # Ensure compatibility
model.load_state_dict(ckpt['model'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
model.eval()
# Image Transformations
transform = transforms.Compose([
transforms.Resize(size=(224,224), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Classification Function
def classify_img(img, threshold):
classification_threshold = threshold
img_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
pred = model(img_tensor)
score = torch.sigmoid(pred).item()
# Determine Prediction
if score >= classification_threshold:
label = "โ
This is an **Ex-Voto** image!"
else:
label = "โ This is **NOT** an Ex-Voto image."
# Format Confidence Score
confidence = f"The probability that the image is an ex-voto is: {score:.2%}"
return label, confidence
# # **๐จ Customized Interface**
demo = gr.Interface(
fn=classify_img,
inputs=[
gr.Image(type="pil"),
gr.Slider(minimum=0.5, maximum=1.0, value=0.7, step=0.1, label="Classification Threshold")
],
outputs=[
gr.Textbox(label="Prediction", interactive=False),
gr.Textbox(label="Confidence Score", interactive=False),
],
title="๐ผ๏ธโ Ex-Voto Image Classifier",
description="๐ธ **Upload an image** to check if it's an **Ex-Voto** painting!",
theme="soft",
allow_flagging="never",
live=False, # Avoids auto-updating; requires a button click
)
# Launch App
demo.launch() |