Spaces:
Sleeping
Sleeping
Commit
·
4e2ac81
0
Parent(s):
Initial commit of Coogee demo
Browse files- app.py +214 -0
- model/model.py +491 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from safetensors.torch import load_file
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
|
| 9 |
+
# -----------------------------
|
| 10 |
+
# Config: where to load things
|
| 11 |
+
# -----------------------------
|
| 12 |
+
# Tokenizer repo (already published)
|
| 13 |
+
TOKENIZER_REPO = os.environ.get("COOGEE_TOKENIZER_REPO", "jameszhou-gl/ehr-gpt")
|
| 14 |
+
|
| 15 |
+
# Where to get model weights/config:
|
| 16 |
+
# - Option A (default): from the same HF repo as tokenizer (set names below)
|
| 17 |
+
# - Option B: from local files (set LOCAL_* paths)
|
| 18 |
+
WEIGHT_REPO = os.environ.get("COOGEE_WEIGHT_REPO", TOKENIZER_REPO)
|
| 19 |
+
WEIGHT_FILENAME = os.environ.get("COOGEE_WEIGHT_FILENAME", "model.safetensors")
|
| 20 |
+
CONFIG_FILENAME = os.environ.get("COOGEE_CONFIG_FILENAME", "config.json")
|
| 21 |
+
|
| 22 |
+
LOCAL_WEIGHT = os.environ.get("COOGEE_LOCAL_WEIGHT", "") # e.g., "hf_upload_tmp/model.safetensors"
|
| 23 |
+
LOCAL_CONFIG = os.environ.get("COOGEE_LOCAL_CONFIG", "") # e.g., "hf_upload_tmp/config.json"
|
| 24 |
+
|
| 25 |
+
# Optional: HF token if the repo is private in a Space
|
| 26 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 27 |
+
|
| 28 |
+
# -----------------------------
|
| 29 |
+
# 1) Import your local model code
|
| 30 |
+
# -----------------------------
|
| 31 |
+
from model.model import Transformer, ModelArgs # <- YOUR local classes
|
| 32 |
+
|
| 33 |
+
# -----------------------------
|
| 34 |
+
# 2) Load tokenizer
|
| 35 |
+
# -----------------------------
|
| 36 |
+
tok = AutoTokenizer.from_pretrained(TOKENIZER_REPO, use_fast=False)
|
| 37 |
+
|
| 38 |
+
# EOS handling: prefer tokenizer.eos_token_id, or fall back to END_RECORD
|
| 39 |
+
def get_eos_id():
|
| 40 |
+
if tok.eos_token_id is not None:
|
| 41 |
+
return tok.eos_token_id
|
| 42 |
+
try:
|
| 43 |
+
return tok.convert_tokens_to_ids("END_RECORD")
|
| 44 |
+
except Exception:
|
| 45 |
+
raise ValueError("No eos_token_id and 'END_RECORD' not found; set eos_token in tokenizer_config.json.")
|
| 46 |
+
|
| 47 |
+
EOS_ID = get_eos_id()
|
| 48 |
+
|
| 49 |
+
# -----------------------------
|
| 50 |
+
# 3) Load config & weights
|
| 51 |
+
# -----------------------------
|
| 52 |
+
if LOCAL_CONFIG and os.path.isfile(LOCAL_CONFIG):
|
| 53 |
+
cfg_path = LOCAL_CONFIG
|
| 54 |
+
else:
|
| 55 |
+
cfg_path = hf_hub_download(WEIGHT_REPO, filename=CONFIG_FILENAME, token=HF_TOKEN)
|
| 56 |
+
|
| 57 |
+
with open(cfg_path, "r") as f:
|
| 58 |
+
cfg = json.load(f)
|
| 59 |
+
|
| 60 |
+
args = ModelArgs(**cfg)
|
| 61 |
+
model = Transformer(args)
|
| 62 |
+
|
| 63 |
+
if LOCAL_WEIGHT and os.path.isfile(LOCAL_WEIGHT):
|
| 64 |
+
weight_path = LOCAL_WEIGHT
|
| 65 |
+
else:
|
| 66 |
+
weight_path = hf_hub_download(WEIGHT_REPO, filename=WEIGHT_FILENAME, token=HF_TOKEN)
|
| 67 |
+
|
| 68 |
+
state = load_file(weight_path)
|
| 69 |
+
missing, unexpected = model.load_state_dict(state, strict=False)
|
| 70 |
+
if missing or unexpected:
|
| 71 |
+
print("[load_state_dict] missing:", missing)
|
| 72 |
+
print("[load_state_dict] unexpected:", unexpected)
|
| 73 |
+
|
| 74 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 75 |
+
model.to(device).eval()
|
| 76 |
+
|
| 77 |
+
# -----------------------------
|
| 78 |
+
# 4) Generation wrapper
|
| 79 |
+
# -----------------------------
|
| 80 |
+
def _has_generate(m):
|
| 81 |
+
return callable(getattr(m, "generate", None))
|
| 82 |
+
|
| 83 |
+
def _fallback_sample(input_ids, max_new_tokens=256, temperature=1.0, top_p=0.95, top_k=50):
|
| 84 |
+
"""
|
| 85 |
+
Minimal sampling loop if your Transformer doesn't implement .generate().
|
| 86 |
+
Assumes model(input_ids) -> logits [B, T, V].
|
| 87 |
+
Stops on EOS_ID.
|
| 88 |
+
"""
|
| 89 |
+
model.eval()
|
| 90 |
+
ids = input_ids.clone()
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
for _ in range(int(max_new_tokens)):
|
| 93 |
+
logits = model(ids) # your forward may return logits directly; if it returns dict, adapt here
|
| 94 |
+
if isinstance(logits, dict):
|
| 95 |
+
logits = logits["logits"]
|
| 96 |
+
next_logits = logits[:, -1, :] / max(temperature, 1e-6) # [B, V]
|
| 97 |
+
|
| 98 |
+
# top-k / nucleus
|
| 99 |
+
if top_k and top_k > 0:
|
| 100 |
+
topk_vals, topk_idx = torch.topk(next_logits, k=min(top_k, next_logits.size(-1)), dim=-1)
|
| 101 |
+
filt = torch.full_like(next_logits, float("-inf"))
|
| 102 |
+
filt.scatter_(1, topk_idx, topk_vals)
|
| 103 |
+
next_logits = filt
|
| 104 |
+
|
| 105 |
+
if 0.0 < top_p < 1.0:
|
| 106 |
+
sorted_logits, sorted_idx = torch.sort(next_logits, descending=True)
|
| 107 |
+
probs = torch.softmax(sorted_logits, dim=-1)
|
| 108 |
+
cum = torch.cumsum(probs, dim=-1)
|
| 109 |
+
mask = cum > top_p
|
| 110 |
+
mask[..., 1:] = mask[..., :-1].clone()
|
| 111 |
+
mask[..., 0] = False
|
| 112 |
+
sorted_logits = sorted_logits.masked_fill(mask, float("-inf"))
|
| 113 |
+
next_logits = torch.zeros_like(next_logits).scatter(1, sorted_idx, sorted_logits)
|
| 114 |
+
|
| 115 |
+
probs = torch.softmax(next_logits, dim=-1)
|
| 116 |
+
next_id = torch.multinomial(probs, num_samples=1) # [B, 1]
|
| 117 |
+
|
| 118 |
+
ids = torch.cat([ids, next_id], dim=1) # [B, T+1]
|
| 119 |
+
if int(next_id.item()) == EOS_ID:
|
| 120 |
+
break
|
| 121 |
+
return ids
|
| 122 |
+
|
| 123 |
+
def generate_timeline(age, sex, race, marital, year,
|
| 124 |
+
max_new_tokens, temperature, top_p, top_k, seed):
|
| 125 |
+
# Build prompt tokens
|
| 126 |
+
prompt_tokens = [
|
| 127 |
+
"START_RECORD",
|
| 128 |
+
age, sex, race, marital, year,
|
| 129 |
+
]
|
| 130 |
+
# to ids
|
| 131 |
+
try:
|
| 132 |
+
ids = [[tok.convert_tokens_to_ids(t) for t in prompt_tokens]]
|
| 133 |
+
except Exception as e:
|
| 134 |
+
return f"Tokenization error: {e}", ""
|
| 135 |
+
|
| 136 |
+
input_ids = torch.tensor(ids, dtype=torch.long, device=device)
|
| 137 |
+
|
| 138 |
+
# Seed
|
| 139 |
+
if seed is not None and str(seed).strip() != "":
|
| 140 |
+
try:
|
| 141 |
+
s = int(seed)
|
| 142 |
+
torch.manual_seed(s)
|
| 143 |
+
if torch.cuda.is_available():
|
| 144 |
+
torch.cuda.manual_seed_all(s)
|
| 145 |
+
except Exception:
|
| 146 |
+
pass
|
| 147 |
+
|
| 148 |
+
# Generate
|
| 149 |
+
if _has_generate(model):
|
| 150 |
+
out = model.generate(
|
| 151 |
+
input_ids=input_ids,
|
| 152 |
+
max_length=min(args.n_ctx, input_ids.size(1) + int(max_new_tokens)),
|
| 153 |
+
temperature=float(temperature),
|
| 154 |
+
top_p=float(top_p),
|
| 155 |
+
top_k=int(top_k),
|
| 156 |
+
do_sample=True,
|
| 157 |
+
eos_token_id=EOS_ID,
|
| 158 |
+
)
|
| 159 |
+
else:
|
| 160 |
+
out = _fallback_sample(
|
| 161 |
+
input_ids, max_new_tokens=int(max_new_tokens),
|
| 162 |
+
temperature=float(temperature), top_p=float(top_p), top_k=int(top_k)
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
gen_ids = out[0, input_ids.size(1):].tolist()
|
| 166 |
+
if EOS_ID in gen_ids:
|
| 167 |
+
end_idx = gen_ids.index(EOS_ID)
|
| 168 |
+
gen_ids = gen_ids[: end_idx + 1]
|
| 169 |
+
|
| 170 |
+
gen_tokens = tok.convert_ids_to_tokens(gen_ids)
|
| 171 |
+
timeline = prompt_tokens + gen_tokens
|
| 172 |
+
text_view = " ".join(timeline)
|
| 173 |
+
table_view = [[i, t] for i, t in enumerate(timeline)]
|
| 174 |
+
return text_view, table_view
|
| 175 |
+
|
| 176 |
+
# -----------------------------
|
| 177 |
+
# 5) Gradio UI
|
| 178 |
+
# -----------------------------
|
| 179 |
+
AGE_OPTS = [f"AGE_{a}_{a+5}_years" for a in range(15, 100, 5)]
|
| 180 |
+
SEX_OPTS = ["SEX_M", "SEX_F"]
|
| 181 |
+
RACE_OPTS = ["RACE_ASIAN", "RACE_BLACK", "RACE_HISPANIC", "RACE_OTHER", "RACE_UNKNOWN", "RACE_WHITE"]
|
| 182 |
+
MARITAL_OPTS = ["MARITAL_STATUS_DIVORCED", "MARITAL_STATUS_MARRIED", "MARITAL_STATUS_SINGLE",
|
| 183 |
+
"MARITAL_STATUS_UNKNOWN", "MARITAL_STATUS_WIDOWED"]
|
| 184 |
+
YEAR_OPTS = [f"YEAR_{y}" for y in range(2005, 2021)]
|
| 185 |
+
|
| 186 |
+
with gr.Blocks(title="Coogee (local model) — Synthetic EHR Generator") as demo:
|
| 187 |
+
gr.Markdown("## Coogee — Generate synthetic EHR timelines (local model class)")
|
| 188 |
+
|
| 189 |
+
with gr.Row():
|
| 190 |
+
age = gr.Dropdown(AGE_OPTS, value="AGE_85_90_years", label="Age")
|
| 191 |
+
sex = gr.Dropdown(SEX_OPTS, value="SEX_M", label="Sex")
|
| 192 |
+
race = gr.Dropdown(RACE_OPTS, value="RACE_UNKNOWN", label="Ethnicity")
|
| 193 |
+
marital = gr.Dropdown(MARITAL_OPTS, value="MARITAL_STATUS_WIDOWED", label="Marital")
|
| 194 |
+
year = gr.Dropdown(YEAR_OPTS, value="YEAR_2017", label="Year")
|
| 195 |
+
|
| 196 |
+
with gr.Row():
|
| 197 |
+
max_new_tokens = gr.Slider(16, 1024, value=256, step=1, label="Max new tokens")
|
| 198 |
+
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.05, label="Temperature")
|
| 199 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.01, label="Top-p")
|
| 200 |
+
top_k = gr.Slider(0, 200, value=50, step=1, label="Top-k")
|
| 201 |
+
seed = gr.Textbox(value="", label="Seed (optional)")
|
| 202 |
+
|
| 203 |
+
btn = gr.Button("Generate")
|
| 204 |
+
out_text = gr.Textbox(lines=6, label="Generated timeline")
|
| 205 |
+
out_table = gr.Dataframe(headers=["Idx", "Token"], label="Token table", interactive=False)
|
| 206 |
+
|
| 207 |
+
btn.click(
|
| 208 |
+
fn=generate_timeline,
|
| 209 |
+
inputs=[age, sex, race, marital, year, max_new_tokens, temperature, top_p, top_k, seed],
|
| 210 |
+
outputs=[out_text, out_table],
|
| 211 |
+
api_name="generate",
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
demo.queue(max_size=20).launch()
|
model/model.py
ADDED
|
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
code by Guanglin Zhou ([email protected])
|
| 3 |
+
Reference: https://github.com/openai/gpt-oss/blob/main/gpt_oss/torch/model.py
|
| 4 |
+
17 Sep 2025: Add KV-cache for efficient inference;
|
| 5 |
+
'''
|
| 6 |
+
import math, json, os
|
| 7 |
+
import numpy as np
|
| 8 |
+
from dataclasses import dataclass, asdict
|
| 9 |
+
from typing import Optional
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
+
def load_auxiliary_embeddings(embd_path: str, vocab_size: int, embd_dim: int, embd_type: str) -> torch.nn.Parameter:
|
| 16 |
+
"""Load auxiliary embeddings (hierarchy, or semantic) from npz file.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
embd_path: Path to the npz file containing embeddings
|
| 20 |
+
vocab_size: Size of the vocabulary
|
| 21 |
+
embd_dim: Dimension of the embeddings
|
| 22 |
+
embd_type: Type of embeddings (for logging purposes)
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
torch.nn.Parameter: Frozen embedding matrix of shape (vocab_size, embd_dim)
|
| 26 |
+
"""
|
| 27 |
+
embeddings = np.zeros((vocab_size, embd_dim))
|
| 28 |
+
|
| 29 |
+
with np.load(embd_path) as data:
|
| 30 |
+
for token_id_str in data.files:
|
| 31 |
+
token_id = int(token_id_str)
|
| 32 |
+
embeddings[token_id] = data[token_id_str]
|
| 33 |
+
|
| 34 |
+
print(f"Loaded {embd_type} embeddings for {len(data.files)} tokens")
|
| 35 |
+
|
| 36 |
+
return nn.Parameter(
|
| 37 |
+
torch.FloatTensor(embeddings),
|
| 38 |
+
requires_grad=False
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class ModelArgs:
|
| 44 |
+
LOG_DIR: str # Directory containing model checkpoints and embeddings
|
| 45 |
+
vocab_size: int = -1 # later loaded from tokenizer
|
| 46 |
+
n_embd: int = 576
|
| 47 |
+
hidden_dim: int = 768
|
| 48 |
+
n_layers: int = 6
|
| 49 |
+
n_ctx: int = 2048
|
| 50 |
+
num_attention_heads: int = 9
|
| 51 |
+
num_key_value_heads: int = 3
|
| 52 |
+
drop_out: float = 0.1
|
| 53 |
+
hidden_act: str = "silu"
|
| 54 |
+
initializer_range: float = 0.041666666666666664
|
| 55 |
+
rms_norm_eps: float = 1e-5
|
| 56 |
+
use_cache: bool = True
|
| 57 |
+
pad_token_id: Optional[int] = None
|
| 58 |
+
bos_token_id: int = 0
|
| 59 |
+
eos_token_id: int = 0
|
| 60 |
+
tie_word_embeddings: bool = True
|
| 61 |
+
rope_theta: float = 10000.0
|
| 62 |
+
use_hierarchy_embd: bool = False
|
| 63 |
+
hierarchy_dim: Optional[int] = None
|
| 64 |
+
use_semantic_embd: bool = False
|
| 65 |
+
semantic_dim: Optional[int] = None
|
| 66 |
+
|
| 67 |
+
@classmethod
|
| 68 |
+
def from_dict(cls, d: dict):
|
| 69 |
+
return cls(**{k: v for k, v in d.items() if k in cls.__annotations__})
|
| 70 |
+
|
| 71 |
+
def to_json(self, path: str):
|
| 72 |
+
with open(path, "w") as f:
|
| 73 |
+
json.dump(asdict(self), f, indent=2)
|
| 74 |
+
|
| 75 |
+
@classmethod
|
| 76 |
+
def from_json(cls, path: str):
|
| 77 |
+
with open(path, "r") as f:
|
| 78 |
+
d = json.load(f)
|
| 79 |
+
return cls.from_dict(d)
|
| 80 |
+
|
| 81 |
+
class RMSNorm(nn.Module):
|
| 82 |
+
def __init__(self, n_embd, eps=1e-5):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.weight = nn.Parameter(torch.ones(n_embd))
|
| 85 |
+
self.eps = eps
|
| 86 |
+
|
| 87 |
+
def forward(self, x):
|
| 88 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 89 |
+
x = x * torch.rsqrt(variance + self.eps)
|
| 90 |
+
return self.weight * x
|
| 91 |
+
|
| 92 |
+
def precompute_rope_frequencies(n_embd: int, n_ctx: int, theta: float = 10000.0):
|
| 93 |
+
position = torch.arange(n_ctx).unsqueeze(1) # [seq_len, 1]
|
| 94 |
+
div_term = theta ** (torch.arange(0, n_embd, 2).float() / n_embd) # [n_embd/2]
|
| 95 |
+
freqs = position / div_term # [seq_len, n_embd/2]
|
| 96 |
+
return freqs
|
| 97 |
+
|
| 98 |
+
def apply_rotary_embeddings(x: torch.Tensor, freqs: torch.Tensor):
|
| 99 |
+
# x shape: [batch, seq_len, heads, head_dim]
|
| 100 |
+
# freqs shape: [seq_len, head_dim/2]
|
| 101 |
+
x_rot = x.float()
|
| 102 |
+
|
| 103 |
+
# Reshape freqs to match x's dimensions
|
| 104 |
+
freqs = freqs.unsqueeze(0).unsqueeze(2) # [1, seq_len, 1, n_embd/2]
|
| 105 |
+
|
| 106 |
+
# Split channels for rotation
|
| 107 |
+
x1, x2 = x_rot[..., :x_rot.shape[-1]//2], x_rot[..., x_rot.shape[-1]//2:]
|
| 108 |
+
|
| 109 |
+
# Apply rotary embeddings
|
| 110 |
+
cos = torch.cos(freqs).to(x.device)
|
| 111 |
+
sin = torch.sin(freqs).to(x.device)
|
| 112 |
+
|
| 113 |
+
# Ensure broadcasting dimensions match
|
| 114 |
+
cos = cos.expand_as(x1)
|
| 115 |
+
sin = sin.expand_as(x1)
|
| 116 |
+
|
| 117 |
+
# Rotate x1 and x2
|
| 118 |
+
x1_rot = x1 * cos - x2 * sin
|
| 119 |
+
x2_rot = x2 * cos + x1 * sin
|
| 120 |
+
|
| 121 |
+
# Concatenate back
|
| 122 |
+
return torch.cat([x1_rot, x2_rot], dim=-1).to(x.dtype)
|
| 123 |
+
|
| 124 |
+
def apply_rope_with_pos_ids(x: torch.Tensor, freqs: torch.Tensor, position_ids: torch.Tensor):
|
| 125 |
+
"""
|
| 126 |
+
x: [B, T, H, Dh] (queries or keys)
|
| 127 |
+
freqs: [max_seq_len, Dh/2] (precomputed table)
|
| 128 |
+
position_ids: [B, T] absolute positions for these tokens
|
| 129 |
+
"""
|
| 130 |
+
B, T, H, Dh = x.shape
|
| 131 |
+
x = x.float()
|
| 132 |
+
|
| 133 |
+
# gather the cos/sin rows for each position in the batch
|
| 134 |
+
cos = torch.cos(freqs[position_ids]) # [B, T, Dh/2]
|
| 135 |
+
sin = torch.sin(freqs[position_ids]) # [B, T, Dh/2]
|
| 136 |
+
|
| 137 |
+
# expand to heads
|
| 138 |
+
cos = cos.unsqueeze(2).expand(B, T, H, Dh // 2) # [B, T, H, Dh/2]
|
| 139 |
+
sin = sin.unsqueeze(2).expand(B, T, H, Dh // 2)
|
| 140 |
+
|
| 141 |
+
x1, x2 = x[..., :Dh//2], x[..., Dh//2:]
|
| 142 |
+
x_rot1 = x1 * cos - x2 * sin
|
| 143 |
+
x_rot2 = x2 * cos + x1 * sin
|
| 144 |
+
out = torch.cat([x_rot1, x_rot2], dim=-1)
|
| 145 |
+
return out.to(dtype=x.dtype)
|
| 146 |
+
|
| 147 |
+
class SelfAttention(nn.Module):
|
| 148 |
+
def __init__(self, args: ModelArgs):
|
| 149 |
+
super().__init__()
|
| 150 |
+
self.n_embd = args.n_embd
|
| 151 |
+
self.num_heads = args.num_attention_heads
|
| 152 |
+
self.num_kv_heads = args.num_key_value_heads
|
| 153 |
+
self.head_dim = args.n_embd // args.num_attention_heads
|
| 154 |
+
|
| 155 |
+
# Adjust projections to match head dimensions
|
| 156 |
+
self.q_proj = nn.Linear(args.n_embd, self.num_heads * self.head_dim, bias=False)
|
| 157 |
+
self.k_proj = nn.Linear(args.n_embd, self.num_kv_heads * self.head_dim, bias=False)
|
| 158 |
+
self.v_proj = nn.Linear(args.n_embd, self.num_kv_heads * self.head_dim, bias=False)
|
| 159 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, args.n_embd, bias=False)
|
| 160 |
+
|
| 161 |
+
# Initialize rotary embeddings
|
| 162 |
+
self.register_buffer(
|
| 163 |
+
"rope_freqs",
|
| 164 |
+
precompute_rope_frequencies(
|
| 165 |
+
self.head_dim, # Use full head_dim for frequencies
|
| 166 |
+
args.n_ctx,
|
| 167 |
+
args.rope_theta
|
| 168 |
+
),
|
| 169 |
+
persistent=False
|
| 170 |
+
)
|
| 171 |
+
self.attn_drop = nn.Dropout(args.drop_out)
|
| 172 |
+
self.residual_drop = nn.Dropout(args.drop_out)
|
| 173 |
+
|
| 174 |
+
def forward(self, hidden_states, attention_mask=None, past_key_value: Optional[tuple] = None, use_cache: bool = False, position_offset: Optional[int] = None):
|
| 175 |
+
"""
|
| 176 |
+
hidden_states: [B, Tq, D]
|
| 177 |
+
past_key_value: Optional[(past_k, past_v)] each [B, H_kv, Tp, Dh] already RoPE-rotated
|
| 178 |
+
use_cache: if True, return current (k,v) concatenated with past for caching upstream
|
| 179 |
+
position_offset: if provided, absolute position of the first token in `hidden_states`
|
| 180 |
+
(i.e., past length). If None, defaults to 0.
|
| 181 |
+
"""
|
| 182 |
+
B, Tq, _ = hidden_states.size()
|
| 183 |
+
Hq = self.num_heads
|
| 184 |
+
Hkv = self.num_kv_heads
|
| 185 |
+
Dh = self.head_dim
|
| 186 |
+
|
| 187 |
+
# Projections
|
| 188 |
+
q = self.q_proj(hidden_states).view(B, Tq, Hq, Dh)
|
| 189 |
+
k_new = self.k_proj(hidden_states).view(B, Tq, Hkv, Dh)
|
| 190 |
+
v_new = self.v_proj(hidden_states).view(B, Tq, Hkv, Dh)
|
| 191 |
+
|
| 192 |
+
# Absolute positions for the NEW tokens
|
| 193 |
+
past_len = 0 if past_key_value is None else past_key_value[0].size(2)
|
| 194 |
+
if position_offset is not None:
|
| 195 |
+
position_offset = past_len
|
| 196 |
+
pos_ids_new = (torch.arange(Tq, device=hidden_states.device) + position_offset).view(1, Tq).expand(B, Tq)
|
| 197 |
+
|
| 198 |
+
# Apply RoPE to new q and k
|
| 199 |
+
q = apply_rope_with_pos_ids(q, self.rope_freqs, pos_ids_new)
|
| 200 |
+
k_new = apply_rope_with_pos_ids(k_new, self.rope_freqs, pos_ids_new)
|
| 201 |
+
|
| 202 |
+
# Prepare full K/V in KV-head space, concatenate with past if any
|
| 203 |
+
if past_key_value is not None:
|
| 204 |
+
past_k, past_v = past_key_value
|
| 205 |
+
k_cat = torch.cat([past_k, k_new.transpose(1, 2)], dim=2)
|
| 206 |
+
v_cat = torch.cat([past_v, v_new.transpose(1, 2)], dim=2)
|
| 207 |
+
else:
|
| 208 |
+
k_cat = k_new.transpose(1, 2)
|
| 209 |
+
v_cat = v_new.transpose(1, 2)
|
| 210 |
+
Tk = k_cat.size(2)
|
| 211 |
+
|
| 212 |
+
# Expand KV to query-heads if using GQA
|
| 213 |
+
if Hkv < Hq:
|
| 214 |
+
repeat = Hq // Hkv
|
| 215 |
+
k_full = k_cat.repeat_interleave(repeat, dim=1)
|
| 216 |
+
v_full = v_cat.repeat_interleave(repeat, dim=1)
|
| 217 |
+
else:
|
| 218 |
+
k_full = k_cat
|
| 219 |
+
v_full = v_cat
|
| 220 |
+
|
| 221 |
+
# Scaled dot-product attention
|
| 222 |
+
q = q.transpose(1, 2) # (B, Hq, Tq, Dh)
|
| 223 |
+
|
| 224 |
+
attn_scores = torch.matmul(q, k_full.transpose(-2, -1)) / math.sqrt(Dh)
|
| 225 |
+
|
| 226 |
+
i_abs = (position_offset + torch.arange(Tq, device=hidden_states.device).unsqueeze(1))
|
| 227 |
+
j_abs = torch.arange(Tk, device=hidden_states.device).unsqueeze(0)
|
| 228 |
+
causal = (j_abs <= i_abs).unsqueeze(0).unsqueeze(0)
|
| 229 |
+
attn_scores = attn_scores.masked_fill(~causal, float('-inf'))
|
| 230 |
+
|
| 231 |
+
# Optional extra mask (e.g., padding mask shaped/broadcastable to [B,1,Tq,Tk])
|
| 232 |
+
if attention_mask is not None:
|
| 233 |
+
attn_scores = attn_scores + attention_mask
|
| 234 |
+
|
| 235 |
+
attn_probs = F.softmax(attn_scores, dim=-1)
|
| 236 |
+
attn_probs = self.attn_drop(attn_probs)
|
| 237 |
+
context = torch.matmul(attn_probs, v_full)
|
| 238 |
+
|
| 239 |
+
context = context.transpose(1, 2).contiguous().view(B, Tq, Hq*Dh)
|
| 240 |
+
out = self.o_proj(context)
|
| 241 |
+
out = self.residual_drop(out)
|
| 242 |
+
if use_cache:
|
| 243 |
+
return out, (k_cat, v_cat)
|
| 244 |
+
else:
|
| 245 |
+
return out, None
|
| 246 |
+
|
| 247 |
+
class FeedForward(nn.Module):
|
| 248 |
+
def __init__(self, args: ModelArgs):
|
| 249 |
+
super().__init__()
|
| 250 |
+
self.gate_proj = nn.Linear(args.n_embd, args.hidden_dim, bias=False)
|
| 251 |
+
self.up_proj = nn.Linear(args.n_embd, args.hidden_dim, bias=False)
|
| 252 |
+
self.down_proj = nn.Linear(args.hidden_dim, args.n_embd, bias=False)
|
| 253 |
+
self.act_fn = nn.SiLU()
|
| 254 |
+
self.drop_out = nn.Dropout(args.drop_out)
|
| 255 |
+
def forward(self, x):
|
| 256 |
+
gate = self.act_fn(self.gate_proj(x))
|
| 257 |
+
up = self.up_proj(x)
|
| 258 |
+
out = self.down_proj(gate * up)
|
| 259 |
+
return self.drop_out(out)
|
| 260 |
+
|
| 261 |
+
class DecoderBlock(nn.Module):
|
| 262 |
+
def __init__(self, args: ModelArgs):
|
| 263 |
+
super().__init__()
|
| 264 |
+
self.self_attn = SelfAttention(args)
|
| 265 |
+
self.ffn = FeedForward(args)
|
| 266 |
+
self.input_layernorm = RMSNorm(args.n_embd, args.rms_norm_eps)
|
| 267 |
+
self.post_attention_layernorm = RMSNorm(args.n_embd, args.rms_norm_eps)
|
| 268 |
+
|
| 269 |
+
def forward(self, hidden_states, attention_mask=None, past_key_value: Optional[tuple] = None, use_cache: bool = False, position_offset: Optional[int] = None):
|
| 270 |
+
residual = hidden_states
|
| 271 |
+
x = self.input_layernorm(hidden_states)
|
| 272 |
+
attn_out, present_kv = self.self_attn(x, attention_mask, past_key_value, use_cache, position_offset)
|
| 273 |
+
hidden_states = residual + attn_out
|
| 274 |
+
|
| 275 |
+
residual = hidden_states
|
| 276 |
+
x = self.post_attention_layernorm(hidden_states)
|
| 277 |
+
ffn_out = self.ffn(x)
|
| 278 |
+
hidden_states = residual + ffn_out
|
| 279 |
+
|
| 280 |
+
return hidden_states, present_kv
|
| 281 |
+
|
| 282 |
+
class Transformer(nn.Module):
|
| 283 |
+
def __init__(self, args: ModelArgs):
|
| 284 |
+
super().__init__()
|
| 285 |
+
self.args = args
|
| 286 |
+
|
| 287 |
+
self.tok_embeddings = nn.Embedding(args.vocab_size, args.n_embd)
|
| 288 |
+
self.emb_drop = nn.Dropout(args.drop_out)
|
| 289 |
+
# Optional auxiliary embeddings
|
| 290 |
+
if args.use_hierarchy_embd:
|
| 291 |
+
hierarchy_embd_path = os.path.join(args.LOG_DIR, "knowledge_embd", "hierarchy_embd.npz")
|
| 292 |
+
self.hierarchy_embeddings = load_auxiliary_embeddings(
|
| 293 |
+
hierarchy_embd_path,
|
| 294 |
+
args.vocab_size,
|
| 295 |
+
args.hierarchy_dim,
|
| 296 |
+
"hierarchy"
|
| 297 |
+
)
|
| 298 |
+
self.hierarchy_proj = nn.Linear(args.hierarchy_dim, args.n_embd, bias=False) # project to n_embd
|
| 299 |
+
self.alpha_h = nn.Parameter(torch.tensor(1.0))
|
| 300 |
+
self.h_rms = RMSNorm(args.n_embd, args.rms_norm_eps)
|
| 301 |
+
if args.use_semantic_embd:
|
| 302 |
+
semantic_embd_path = os.path.join(args.LOG_DIR, "knowledge_embd", "semantic_embd.npz")
|
| 303 |
+
self.semantic_embeddings = load_auxiliary_embeddings(
|
| 304 |
+
semantic_embd_path,
|
| 305 |
+
args.vocab_size,
|
| 306 |
+
args.semantic_dim,
|
| 307 |
+
"semantic"
|
| 308 |
+
)
|
| 309 |
+
self.semantic_proj = nn.Linear(args.semantic_dim, args.n_embd, bias=False) # project to n_embd
|
| 310 |
+
self.alpha_s = nn.Parameter(torch.tensor(1.0))
|
| 311 |
+
self.s_rms = RMSNorm(args.n_embd, args.rms_norm_eps)
|
| 312 |
+
|
| 313 |
+
self.layers = nn.ModuleList()
|
| 314 |
+
for _ in range(args.n_layers):
|
| 315 |
+
self.layers.append(DecoderBlock(args))
|
| 316 |
+
self.final_norm = RMSNorm(args.n_embd, args.rms_norm_eps)
|
| 317 |
+
# Add output before weight tying
|
| 318 |
+
self.output = nn.Linear(args.n_embd, args.vocab_size, bias=False)
|
| 319 |
+
# Initialize weights
|
| 320 |
+
self.apply(self._init_weights)
|
| 321 |
+
|
| 322 |
+
# Tie weights if configured
|
| 323 |
+
if args.tie_word_embeddings:
|
| 324 |
+
self.output.weight = self.tok_embeddings.weight
|
| 325 |
+
|
| 326 |
+
def _init_weights(self, module):
|
| 327 |
+
if isinstance(module, nn.Linear):
|
| 328 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.args.initializer_range)
|
| 329 |
+
if module.bias is not None:
|
| 330 |
+
torch.nn.init.zeros_(module.bias)
|
| 331 |
+
elif isinstance(module, nn.Embedding):
|
| 332 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.args.initializer_range)
|
| 333 |
+
|
| 334 |
+
def print_model_params(self, print_details: bool = True):
|
| 335 |
+
"""Print a detailed breakdown of model parameters."""
|
| 336 |
+
total_params = 0
|
| 337 |
+
if print_details:
|
| 338 |
+
print("\nModel Parameter Details:")
|
| 339 |
+
print("-" * 100)
|
| 340 |
+
print(f"{'Layer':<40} {'Shape':>20} {'Parameters':>15} {'Status':>15}")
|
| 341 |
+
print("-" * 100)
|
| 342 |
+
|
| 343 |
+
for name, param in self.named_parameters():
|
| 344 |
+
param_count = param.numel()
|
| 345 |
+
total_params += param_count
|
| 346 |
+
status = "Trainable" if param.requires_grad else "Frozen"
|
| 347 |
+
print(f"{name:<40} {str(list(param.shape)):>20} {param_count:>15,} {status:>15}")
|
| 348 |
+
|
| 349 |
+
print("-" * 80)
|
| 350 |
+
print(f"{'Total Parameters':<40} {' ':>20} {total_params:>15,}")
|
| 351 |
+
print("\nParameter count by component:")
|
| 352 |
+
|
| 353 |
+
# Count parameters by major components
|
| 354 |
+
def count_params(pattern):
|
| 355 |
+
all_params = sum(p.numel() for name, p in self.named_parameters() if pattern in name)
|
| 356 |
+
trainable = sum(p.numel() for name, p in self.named_parameters() if pattern in name and p.requires_grad)
|
| 357 |
+
frozen = sum(p.numel() for name, p in self.named_parameters() if pattern in name and not p.requires_grad)
|
| 358 |
+
return all_params, trainable, frozen
|
| 359 |
+
|
| 360 |
+
components = {
|
| 361 |
+
'Token Embeddings': 'tok_embeddings',
|
| 362 |
+
'Hierarchy Embeddings': 'hierarchy_embeddings',
|
| 363 |
+
'Hierarchy Projection': 'hierarchy_proj',
|
| 364 |
+
'Semantic Embeddings': 'semantic_embeddings',
|
| 365 |
+
'Semantic Projection': 'semantic_proj',
|
| 366 |
+
'DecoderBlock': 'layers',
|
| 367 |
+
'Final Norm': 'final_norm',
|
| 368 |
+
'Output Layer': 'output'
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
print(f"{'Component':<20} {'Total':>15} {'Trainable':>15} {'Frozen':>15}")
|
| 372 |
+
print("-" * 70)
|
| 373 |
+
|
| 374 |
+
for component, pattern in components.items():
|
| 375 |
+
total, trainable, frozen = count_params(pattern)
|
| 376 |
+
print(f"{component:<20} {total:>15,} {trainable:>15,} {frozen:>15,}")
|
| 377 |
+
|
| 378 |
+
# Count trainable vs non-trainable parameters
|
| 379 |
+
trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
| 380 |
+
frozen_params = sum(p.numel() for p in self.parameters() if not p.requires_grad)
|
| 381 |
+
print(f"\nTrainable parameters: {trainable_params:>15,}")
|
| 382 |
+
print(f"Frozen parameters: {frozen_params:>15,}")
|
| 383 |
+
print(f"Total parameters: {trainable_params + frozen_params:>15,}")
|
| 384 |
+
|
| 385 |
+
def forward(self, input_ids, attention_mask=None, past_key_values: Optional[list] = None, use_cache: bool = False):
|
| 386 |
+
B, Tq = input_ids.shape
|
| 387 |
+
device = input_ids.device
|
| 388 |
+
|
| 389 |
+
hidden_states = self.tok_embeddings(input_ids) # [B, Tq, D]
|
| 390 |
+
|
| 391 |
+
# Optional auxiliary embeddings (unchanged)
|
| 392 |
+
if self.args.use_hierarchy_embd:
|
| 393 |
+
h = self.hierarchy_proj(self.hierarchy_embeddings[input_ids])
|
| 394 |
+
hidden_states = hidden_states + self.alpha_h * self.h_rms(h)
|
| 395 |
+
if self.args.use_semantic_embd:
|
| 396 |
+
s = self.semantic_proj(self.semantic_embeddings[input_ids])
|
| 397 |
+
hidden_states = hidden_states + self.alpha_s * self.s_rms(s)
|
| 398 |
+
hidden_states = self.emb_drop(hidden_states)
|
| 399 |
+
# We build causal mask per layer inside attention using absolute positions. If need padding masks, use the attention_mask argument.
|
| 400 |
+
|
| 401 |
+
if past_key_values is None:
|
| 402 |
+
past_key_values = [None] * len(self.layers)
|
| 403 |
+
|
| 404 |
+
# Absolute starting position for FIRST query token in this call
|
| 405 |
+
past_len = 0 if past_key_values[0] is None else past_key_values[0][0].size(2)
|
| 406 |
+
|
| 407 |
+
presents = [] if use_cache else None
|
| 408 |
+
for layer, past_kv in zip(self.layers, past_key_values):
|
| 409 |
+
hidden_states, present_kv = layer(hidden_states, attention_mask, past_kv, use_cache, position_offset=past_len)
|
| 410 |
+
if use_cache:
|
| 411 |
+
presents.append(present_kv)
|
| 412 |
+
hidden_states = self.final_norm(hidden_states)
|
| 413 |
+
logits = self.output(hidden_states)
|
| 414 |
+
if use_cache:
|
| 415 |
+
return logits, presents
|
| 416 |
+
else:
|
| 417 |
+
return logits
|
| 418 |
+
|
| 419 |
+
@staticmethod
|
| 420 |
+
def _sample_top_p(logits: torch.Tensor, top_p: float = 0.9, temperature: float = 1.0) -> torch.Tensor:
|
| 421 |
+
"""
|
| 422 |
+
logits: [B, V]
|
| 423 |
+
returns: next_token ids [B]
|
| 424 |
+
"""
|
| 425 |
+
if temperature <= 0:
|
| 426 |
+
# greedy fallback
|
| 427 |
+
return torch.argmax(logits, dim=-1)
|
| 428 |
+
|
| 429 |
+
logits = logits / temperature
|
| 430 |
+
probs = F.softmax(logits, dim=-1) # [B, V]
|
| 431 |
+
|
| 432 |
+
# sort by prob desc
|
| 433 |
+
sorted_probs, sorted_idx = torch.sort(probs, dim=-1, descending=True) # [B, V], [B, V]
|
| 434 |
+
cumsum = torch.cumsum(sorted_probs, dim=-1) # [B, V]
|
| 435 |
+
|
| 436 |
+
# mask everything past the nucleus (keep the first token that crosses top_p)
|
| 437 |
+
cutoff = cumsum > top_p # [B, V] boolean
|
| 438 |
+
# shift mask right so we keep at least one token per row
|
| 439 |
+
cutoff[..., 1:] = cutoff[..., :-1].clone()
|
| 440 |
+
cutoff[..., 0] = False
|
| 441 |
+
|
| 442 |
+
sorted_probs = sorted_probs.masked_fill(cutoff, 0.0)
|
| 443 |
+
# re-normalize
|
| 444 |
+
sorted_probs = sorted_probs / sorted_probs.sum(dim=-1, keepdim=True)
|
| 445 |
+
|
| 446 |
+
# sample in the sorted space then map back to original vocab ids
|
| 447 |
+
next_sorted_idx = torch.multinomial(sorted_probs, num_samples=1) # [B, 1]
|
| 448 |
+
next_token = torch.gather(sorted_idx, -1, next_sorted_idx).squeeze(-1) # [B]
|
| 449 |
+
return next_token
|
| 450 |
+
|
| 451 |
+
def print_alpha_values(self):
|
| 452 |
+
alpha_h, alpha_s = None, None
|
| 453 |
+
if hasattr(self, 'alpha_h'):
|
| 454 |
+
print(f"Hierarchy (alpha_h): {self.alpha_h.item():.4f}")
|
| 455 |
+
alpha_h = self.alpha_h.item()
|
| 456 |
+
if hasattr(self, 'alpha_s'):
|
| 457 |
+
print(f"Semantic (alpha_s): {self.alpha_s.item():.4f}")
|
| 458 |
+
alpha_s = self.alpha_s.item()
|
| 459 |
+
return alpha_h, alpha_s
|
| 460 |
+
|
| 461 |
+
def generate(self, input_ids, max_length=None, temperature=1.0, top_p=0.9, end_token_id=None):
|
| 462 |
+
"""
|
| 463 |
+
input_ids: [B, T] (B can be 1)
|
| 464 |
+
returns: [B, T_out]
|
| 465 |
+
"""
|
| 466 |
+
self.eval()
|
| 467 |
+
max_length = self.args.n_ctx if max_length is None else min(max_length, self.args.n_ctx)
|
| 468 |
+
end_token_id = self.args.eos_token_id if end_token_id is None else end_token_id # default is eos_token_id, might be different for different tasks
|
| 469 |
+
|
| 470 |
+
device = input_ids.device
|
| 471 |
+
cur = input_ids
|
| 472 |
+
B = cur.size(0)
|
| 473 |
+
finished = torch.zeros(B, dtype=torch.bool, device=device)
|
| 474 |
+
|
| 475 |
+
with torch.no_grad():
|
| 476 |
+
logits, past = self(cur, use_cache=True)
|
| 477 |
+
|
| 478 |
+
while cur.size(1) < max_length:
|
| 479 |
+
next_logits = logits[:, -1, :] # [B, V]
|
| 480 |
+
next_token = Transformer._sample_top_p(next_logits, top_p, temperature) # [B]
|
| 481 |
+
next_token = torch.where(finished, torch.full_like(next_token, end_token_id), next_token)
|
| 482 |
+
|
| 483 |
+
cur = torch.cat([cur, next_token.unsqueeze(1)], dim=1) # [B, T+1]
|
| 484 |
+
finished = finished | (next_token == end_token_id)
|
| 485 |
+
if torch.all(finished):
|
| 486 |
+
break
|
| 487 |
+
|
| 488 |
+
last = next_token.view(B, 1)
|
| 489 |
+
logits, past = self(last, use_cache=True, past_key_values=past)
|
| 490 |
+
|
| 491 |
+
return cur
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers>=4.43
|
| 3 |
+
huggingface_hub>=0.23
|
| 4 |
+
safetensors
|
| 5 |
+
gradio>=4.0
|
| 6 |
+
numpy
|