Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,117 Bytes
2a6e562 5609861 c155c18 e37049e c155c18 123eeba c155c18 5609861 c155c18 e7b2f35 c155c18 6c6d2da c155c18 e7b2f35 c155c18 e7b2f35 2517b6c e7b2f35 2517b6c 1221d93 c155c18 1221d93 c155c18 e7b2f35 5609861 e7b2f35 2517b6c c8df52d e7b2f35 5609861 e7b2f35 5609861 2a6e562 e7b2f35 f8f5319 e7b2f35 2a6e562 1221d93 c8df52d e7b2f35 2a6e562 c8df52d e7b2f35 c155c18 4601fe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
title: FlashWorld
emoji: π
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.49.1
app_file: app_gradio.py
pinned: false
license: cc-by-nc-sa-4.0
python_version: 3.10.13
---
<p align="center">
<h2 align="center">
<img src="https://github.com/imlixinyang/FlashWorld-Project-Page/blob/main/static/images/favicon.svg" alt="FlashWorld" style="height: 1.2rem; width: auto; margin-right: -2rem; vertical-align: middle;">
<em>FlashWorld: High-quality 3D Scene Generation within Seconds</em></h2>
<p align="center">
<a href="https://arxiv.org/pdf/2510.13678"><img src='https://img.shields.io/badge/arXiv-FlashWorld-red?logo=arxiv' alt='Paper PDF'></a>
<a href='https://imlixinyang.github.io/FlashWorld-Project-Page'><img src='https://img.shields.io/badge/Project_Page-FlashWorld-green' alt='Project Page'></a>
<!-- <a href='https://colab.research.google.com/drive/1LtnxgBU7k4gyymOWuonpOxjatdJ7AI8z?usp=sharing'><img src='https://img.shields.io/badge/Colab_Demo-Director3D-yellow?logo=googlecolab' alt='Project Page'></a> -->
</p>
<p align="center">
<img width="3182" height="1174" alt="teaser" src="https://github.com/user-attachments/assets/e4aae261-83fd-494d-9b08-00ae265a74e4" />
</p>
***TL;DR:*** FlashWorld enables fast (**7 seconds on a single A100/A800 GPU**) and high-quality 3D scene generation across diverse scenes, from a single image or text prompt.
FlashWorld also supports generation with only **24GB** GPU memory!
## Demo
https://github.com/user-attachments/assets/12ba4776-e7b7-4152-b885-dd6161aa9b4b
## π₯ News:
We are actively building an online demo. Please stay tuned!
- [2025.10.16] Paper and local demo code released.
## Installation
- install packages
```
pip install torch torchvision
pip install triton transformers pytorch_lightning omegaconf ninja numpy jaxtyping rich tensorboard einops moviepy==1.0.3 webdataset accelerate opencv-python lpips av plyfile ftfy peft tensorboard pandas flask
```
Please refer to the `requirements.txt` file for the exact package versions.
- install ```[email protected]``` and ```diffusers@wan-5Bi2v``` packages
```
pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712
pip install git+https://github.com/huggingface/diffusers.git@447e8322f76efea55d4769cd67c372edbf0715b8
```
- clone this repo:
```
git clone https://github.com/imlixinyang/FlashWorld.git
cd FlashWorld
```
- run our demo app:
**Local Demo (Flask + Custom UI):**
```
python app.py
```
**ZeroGPU Demo (Gradio):**
```
python app_gradio.py
```
If your machine has limited GPU memory, consider adding the ```--offload_t5``` flag to offload text encoding to the CPU, which will reduce GPU memory usage. Note that this may slow down the generation speed somewhat.
Then, open your web browser and navigate to ```http://HOST_IP:7860``` to start exploring FlashWorld!
## ZeroGPU Deployment
This repository is compatible with Hugging Face Spaces using ZeroGPU. The `app_gradio.py` file provides a Gradio interface with:
- **15-second GPU budget** per generation (configurable via `@spaces.GPU(duration=15)`)
- Model loading happens **outside** the GPU decorator for efficiency
- Supports both image and text prompts
- Camera trajectory input via JSON
- Outputs 3D Gaussian Splatting PLY files
To deploy on Hugging Face Spaces:
1. Create a new Space with ZeroGPU hardware
2. Set `app_file: app_gradio.py` in the README header
3. The model checkpoint will be automatically downloaded from HuggingFace Hub
<!-- We also provide example trajectory josn files and input images in the `examples/` directory. -->
## More Generation Results
[https://github.com/user-attachments/assets/bbdbe5de-5e15-4471-b380-4d8191688d82](https://github.com/user-attachments/assets/53d41748-4c35-48c4-9771-f458421c0b38)
## License
Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)
The code is released for academic research use only.
If you have any questions, please contact me via [[email protected]](mailto:[email protected]).
|