FlashWorld-ZeroGPU / app_gradio.py
Julian Bilcke
Add ZeroGPU Gradio app and deployment documentation
2a6e562
raw
history blame
22.3 kB
try:
import spaces
GPU = spaces.GPU
print("spaces GPU is available")
except ImportError:
def GPU(duration=15):
def decorator(func):
return func
return decorator
print("spaces GPU is NOT available, using fallback decorator")
import os
import torch
import numpy as np
import imageio
import json
import time
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
import einops
import torch.nn as nn
import torch.nn.functional as F
from models import *
from utils import *
from transformers import T5TokenizerFast, UMT5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
return torch.argmin(
(timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item()
class GenerationSystem(nn.Module):
def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False):
super().__init__()
self.device = device
self.offload_t5 = offload_t5
self.offload_vae = offload_vae
self.latent_dim = 48
self.temporal_downsample_factor = 4
self.spatial_downsample_factor = 16
self.feat_dim = 1024
self.latent_patch_size = 2
self.denoising_steps = [0, 250, 500, 750]
model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval()
from models.autoencoder_kl_wan import WanCausalConv3d
with torch.no_grad():
for name, module in self.vae.named_modules():
if isinstance(module, WanCausalConv3d):
time_pad = module._padding[4]
module.padding = (0, module._padding[2], module._padding[0])
module._padding = (0, 0, 0, 0, 0, 0)
module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone())
self.vae.requires_grad_(False)
self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.latent_scale_fn = lambda x: (x - self.latents_mean) / self.latents_std
self.latent_unscale_fn = lambda x: x * self.latents_std + self.latents_mean
self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer")
self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu")
self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False)
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim)))
weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1])
bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim)
extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02
extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim)
self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone())
self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone())
self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device)
self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3)
self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device))
self.transformer.disable_gradient_checkpointing()
self.transformer.gradient_checkpointing = False
self.add_feedback_for_transformer()
if ckpt_path is not None:
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
self.transformer.load_state_dict(state_dict["transformer"])
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
print(f"Loaded {ckpt_path}.")
from quant import FluxFp8GeMMProcessor
FluxFp8GeMMProcessor(self.transformer)
del self.vae.post_quant_conv, self.vae.decoder
self.vae.to(self.device if not self.offload_vae else "cpu")
self.transformer.to(self.device)
def add_feedback_for_transformer(self):
self.use_feedback = True
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim)))
def encode_text(self, texts):
max_sequence_length = 512
text_inputs = self.tokenizer(
texts,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
if getattr(self, "offload_t5", False):
text_input_ids = text_inputs.input_ids.to("cpu")
mask = text_inputs.attention_mask.to("cpu")
else:
text_input_ids = text_inputs.input_ids.to(self.device)
mask = text_inputs.attention_mask.to(self.device)
seq_lens = mask.gt(0).sum(dim=1).long()
if getattr(self, "offload_t5", False):
with torch.no_grad():
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device)
else:
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state
text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)]
text_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0
)
return text_embeds.float()
def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True):
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred_2d = noisy_latents - sigma * v_pred
if need_3d_mode:
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode(
einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype)
return {
'2d': latents_pred_2d,
'3d': latents_pred_3d if need_3d_mode else None,
'rgb_3d': images_pred if need_3d_mode else None,
'scene': scene_params if need_3d_mode else None,
'feat': feats
}
@torch.no_grad()
@torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda")
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
with torch.no_grad():
batch_size = 1
cameras = cameras.to(self.device).unsqueeze(0)
if cameras.shape[1] != n_frame:
render_cameras = cameras.clone()
cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0)
else:
render_cameras = cameras
cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None)
render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None)
text = "[Static] " + text
text_embeds = self.encode_text([text])
masks = torch.zeros(batch_size, n_frame, device=self.device)
condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
if image is not None:
image = image.to(self.device)
latent = self.latent_scale_fn(self.vae.encode(
image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2)
masks[:, image_index] = 1
condition_latents[:, :, image_index] = latent
raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor)
raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame)
noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
noisy_latents = noise
torch.cuda.empty_cache()
if self.use_feedback:
prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
for i in range(len(self.denoising_steps)):
t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device)
t = self.timesteps[t_ids]
if self.use_feedback:
_condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1)
else:
_condition_latents = condition_latents
if i < len(self.denoising_steps) - 1:
out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True)
latents_pred = out["3d"]
if self.use_feedback:
prev_latents_pred = latents_pred
prev_feats = out['feat']
noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise))
else:
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred = noisy_latents - sigma * v_pred
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
if video_output_path is not None:
interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C')
interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))]
imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1)
scene_params = scene_params[0]
scene_params = scene_params.detach().cpu()
return scene_params, ref_w2c, T_norm
# Initialize the model globally (outside GPU decorator)
print("Initializing model...")
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt", default=None)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--offload_t5", action="store_true", help="Offload T5 encoder to CPU to save GPU memory")
args, _ = parser.parse_known_args()
# Ensure model.ckpt exists, download if not present
if args.ckpt is None:
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt")
if not os.path.exists(ckpt_path):
print("Downloading model checkpoint...")
hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False)
else:
ckpt_path = args.ckpt
device = f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu"
print(f"Loading model on device: {device}")
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device, offload_t5=args.offload_t5)
print("Model loaded successfully!")
# GPU-decorated generation function with 15-second budget
@GPU(duration=15)
def generate_scene(
image_prompt,
text_prompt,
camera_json,
resolution,
progress=gr.Progress()
):
"""
Generate 3D scene from image/text prompts and camera trajectory.
Args:
image_prompt: PIL Image or None
text_prompt: str
camera_json: JSON string with camera trajectory
resolution: str in format "NxHxW"
"""
try:
progress(0, desc="Parsing inputs...")
# Parse resolution
n_frame, image_height, image_width = [int(x) for x in resolution.split('x')]
# Parse camera JSON
try:
camera_data = json.loads(camera_json)
if "cameras" not in camera_data or len(camera_data["cameras"]) == 0:
return None, "Error: No cameras found in JSON"
except json.JSONDecodeError as e:
return None, f"Error: Invalid JSON format: {str(e)}"
progress(0.1, desc="Processing camera trajectory...")
# Convert cameras to tensor
cameras = []
for cam in camera_data["cameras"]:
quat = cam["quaternion"] # [w, x, y, z]
pos = cam["position"] # [x, y, z]
fx = cam.get("fx", 0.5 / np.tan(0.5 * 60 * np.pi / 180) * image_height)
fy = cam.get("fy", 0.5 / np.tan(0.5 * 60 * np.pi / 180) * image_height)
cx = cam.get("cx", 0.5 * image_width)
cy = cam.get("cy", 0.5 * image_height)
camera_tensor = np.array([
quat[0], quat[1], quat[2], quat[3], # quaternion
pos[0], pos[1], pos[2], # position
fx / image_width, fy / image_height, # normalized focal lengths
cx / image_width, cy / image_height # normalized principal point
], dtype=np.float32)
cameras.append(camera_tensor)
cameras = torch.from_numpy(np.stack(cameras, axis=0))
# Process image prompt
image = None
if image_prompt is not None:
progress(0.2, desc="Processing image prompt...")
# Convert PIL to tensor and resize
img = image_prompt.convert('RGB')
w, h = img.size
# Center crop
if image_height / h > image_width / w:
scale = image_height / h
else:
scale = image_width / w
new_h = int(image_height / scale)
new_w = int(image_width / scale)
img = img.crop((
(w - new_w) // 2, (h - new_h) // 2,
new_w + (w - new_w) // 2, new_h + (h - new_h) // 2
)).resize((image_width, image_height))
image = torch.from_numpy(np.array(img)).float().permute(2, 0, 1) / 255.0 * 2 - 1
progress(0.3, desc="Generating 3D scene (this takes ~7 seconds)...")
# Generate scene
output_path = f"/tmp/flashworld_output_{int(time.time())}.mp4"
scene_params, ref_w2c, T_norm = generation_system.generate(
cameras=cameras,
n_frame=n_frame,
image=image,
text=text_prompt,
image_index=0,
image_height=image_height,
image_width=image_width,
video_output_path=output_path
)
progress(0.9, desc="Exporting result...")
# Export to PLY
ply_path = f"/tmp/flashworld_output_{int(time.time())}.ply"
export_ply_for_gaussians(ply_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
progress(1.0, desc="Done!")
return ply_path, f"Generation successful! Scene contains {scene_params.shape[0]} Gaussians."
except Exception as e:
import traceback
error_msg = f"Error during generation: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return None, error_msg
# Create Gradio interface
def create_demo():
with gr.Blocks(title="FlashWorld: Fast 3D Scene Generation") as demo:
gr.Markdown("""
# FlashWorld: High-quality 3D Scene Generation within Seconds
Generate 3D scenes in ~7 seconds from text or image prompts with camera trajectory!
**Note:** This demo uses ZeroGPU with a 15-second budget. Please ensure your camera trajectory is reasonable.
""")
with gr.Row():
with gr.Column():
# Input controls
gr.Markdown("### 1. Prompts")
image_input = gr.Image(label="Image Prompt (Optional)", type="pil")
text_input = gr.Textbox(
label="Text Prompt",
placeholder="A beautiful mountain landscape with trees...",
value=""
)
gr.Markdown("### 2. Camera Trajectory")
camera_json_input = gr.Code(
label="Camera JSON",
language="json",
value="""{
"cameras": [
{
"quaternion": [1, 0, 0, 0],
"position": [0, 0, 0],
"fx": 352.0,
"fy": 352.0,
"cx": 352.0,
"cy": 240.0
},
{
"quaternion": [1, 0, 0, 0],
"position": [0, 0, -0.5],
"fx": 352.0,
"fy": 352.0,
"cx": 352.0,
"cy": 240.0
}
]
}""",
lines=15
)
gr.Markdown("### 3. Resolution")
resolution_input = gr.Dropdown(
label="Resolution (NxHxW)",
choices=["24x480x704", "24x704x480"],
value="24x480x704"
)
generate_btn = gr.Button("Generate 3D Scene", variant="primary", size="lg")
with gr.Column():
# Output
gr.Markdown("### Output")
output_file = gr.File(label="Download PLY File")
output_message = gr.Textbox(label="Status", lines=3)
gr.Markdown("""
### Instructions:
1. **Optional:** Upload an image prompt
2. **Optional:** Enter a text description
3. **Required:** Provide camera trajectory as JSON
4. Select resolution (24 frames recommended)
5. Click "Generate 3D Scene"
The camera JSON should contain an array of cameras with:
- `quaternion`: [w, x, y, z] rotation
- `position`: [x, y, z] translation
- `fx`, `fy`: focal lengths (pixels)
- `cx`, `cy`: principal point (pixels)
**Tips:**
- Generation takes ~7 seconds on GPU
- Download the PLY file to view in 3D viewers
- Use reasonable camera trajectories (not too many frames)
""")
# Connect the button
generate_btn.click(
fn=generate_scene,
inputs=[image_input, text_input, camera_json_input, resolution_input],
outputs=[output_file, output_message]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)