Spaces:
Build error
Build error
Upload 27 files
Browse files- tok/__init__.py +1 -0
- tok/__pycache__/__init__.cpython-310.pyc +0 -0
- tok/__pycache__/__init__.cpython-311.pyc +0 -0
- tok/__pycache__/mm_autoencoder.cpython-311.pyc +0 -0
- tok/__pycache__/models.cpython-310.pyc +0 -0
- tok/__pycache__/models.cpython-311.pyc +0 -0
- tok/__pycache__/ta_tok.cpython-310.pyc +0 -0
- tok/__pycache__/ta_tok.cpython-311.pyc +0 -0
- tok/__pycache__/utils.cpython-310.pyc +0 -0
- tok/__pycache__/utils.cpython-311.pyc +0 -0
- tok/ar_dtok/__init__.py +2 -0
- tok/ar_dtok/__pycache__/__init__.cpython-310.pyc +0 -0
- tok/ar_dtok/__pycache__/__init__.cpython-311.pyc +0 -0
- tok/ar_dtok/__pycache__/ar_model.cpython-311.pyc +0 -0
- tok/ar_dtok/__pycache__/bottleneck.cpython-310.pyc +0 -0
- tok/ar_dtok/__pycache__/bottleneck.cpython-311.pyc +0 -0
- tok/ar_dtok/__pycache__/generate.cpython-311.pyc +0 -0
- tok/ar_dtok/__pycache__/vqvae.cpython-310.pyc +0 -0
- tok/ar_dtok/__pycache__/vqvae.cpython-311.pyc +0 -0
- tok/ar_dtok/ar_model.py +533 -0
- tok/ar_dtok/bottleneck.py +184 -0
- tok/ar_dtok/generate.py +188 -0
- tok/ar_dtok/vqvae.py +457 -0
- tok/mm_autoencoder.py +64 -0
- tok/models.py +31 -0
- tok/ta_tok.py +164 -0
- tok/utils.py +15 -0
tok/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .ar_dtok import *
|
tok/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (166 Bytes). View file
|
|
|
tok/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (185 Bytes). View file
|
|
|
tok/__pycache__/mm_autoencoder.cpython-311.pyc
ADDED
|
Binary file (4.81 kB). View file
|
|
|
tok/__pycache__/models.cpython-310.pyc
ADDED
|
Binary file (1.18 kB). View file
|
|
|
tok/__pycache__/models.cpython-311.pyc
ADDED
|
Binary file (2.03 kB). View file
|
|
|
tok/__pycache__/ta_tok.cpython-310.pyc
ADDED
|
Binary file (5.36 kB). View file
|
|
|
tok/__pycache__/ta_tok.cpython-311.pyc
ADDED
|
Binary file (9.93 kB). View file
|
|
|
tok/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (965 Bytes). View file
|
|
|
tok/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (1.58 kB). View file
|
|
|
tok/ar_dtok/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .bottleneck import Bottleneck, SimVectorQuantizer
|
| 2 |
+
from .vqvae import VQVAE
|
tok/ar_dtok/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (259 Bytes). View file
|
|
|
tok/ar_dtok/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (306 Bytes). View file
|
|
|
tok/ar_dtok/__pycache__/ar_model.cpython-311.pyc
ADDED
|
Binary file (34.5 kB). View file
|
|
|
tok/ar_dtok/__pycache__/bottleneck.cpython-310.pyc
ADDED
|
Binary file (5.35 kB). View file
|
|
|
tok/ar_dtok/__pycache__/bottleneck.cpython-311.pyc
ADDED
|
Binary file (9.67 kB). View file
|
|
|
tok/ar_dtok/__pycache__/generate.cpython-311.pyc
ADDED
|
Binary file (10.4 kB). View file
|
|
|
tok/ar_dtok/__pycache__/vqvae.cpython-310.pyc
ADDED
|
Binary file (13.6 kB). View file
|
|
|
tok/ar_dtok/__pycache__/vqvae.cpython-311.pyc
ADDED
|
Binary file (27.9 kB). View file
|
|
|
tok/ar_dtok/ar_model.py
ADDED
|
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from contextlib import contextmanager
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
from .. import models
|
| 12 |
+
from .generate import generate as ar_generate
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def find_multiple(n: int, k: int):
|
| 16 |
+
if n % k == 0:
|
| 17 |
+
return n
|
| 18 |
+
return n + k - (n % k)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, scale_factor=10000):
|
| 22 |
+
"""
|
| 23 |
+
embed_dim: output dimension for each position
|
| 24 |
+
pos: a list of positions to be encoded: size (M,)
|
| 25 |
+
out: (M, D)
|
| 26 |
+
scale_factor: the base for the scaling factor, default is 10000
|
| 27 |
+
"""
|
| 28 |
+
assert embed_dim % 2 == 0
|
| 29 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
| 30 |
+
omega /= embed_dim / 2.
|
| 31 |
+
omega = 1. / scale_factor**omega # Parameterized scaling factor (D/2,)
|
| 32 |
+
|
| 33 |
+
pos = pos.reshape(-1) # (M,)
|
| 34 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
| 35 |
+
|
| 36 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 37 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 38 |
+
|
| 39 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 40 |
+
return emb
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@dataclass
|
| 44 |
+
class ModelArgs:
|
| 45 |
+
dim: int = 4096
|
| 46 |
+
n_layer: int = 32
|
| 47 |
+
n_head: int = 32
|
| 48 |
+
|
| 49 |
+
n_kv_head: Optional[int] = None
|
| 50 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
| 51 |
+
ffn_dim_multiplier: Optional[float] = None
|
| 52 |
+
rope_base: float = 10000
|
| 53 |
+
norm_eps: float = 1e-5
|
| 54 |
+
initializer_range: float = 0.02
|
| 55 |
+
|
| 56 |
+
token_dropout_p: float = 0.1
|
| 57 |
+
attn_dropout_p: float = 0.0
|
| 58 |
+
resid_dropout_p: float = 0.1
|
| 59 |
+
ffn_dropout_p: float = 0.1
|
| 60 |
+
drop_path_rate: float = 0.0
|
| 61 |
+
|
| 62 |
+
num_classes: int = 1000
|
| 63 |
+
class_dropout_prob: float = 0.1
|
| 64 |
+
model_type: str = 'class_cond' # clip_cond, indice_cond
|
| 65 |
+
cond_dim: int = 1152
|
| 66 |
+
cond_vocab_size: int = 8192
|
| 67 |
+
|
| 68 |
+
vocab_size: int = 8192
|
| 69 |
+
cls_token_num: int = 1
|
| 70 |
+
|
| 71 |
+
max_batch_size: int = 32
|
| 72 |
+
max_seq_len: int = 2048
|
| 73 |
+
|
| 74 |
+
use_fixed_pe: bool = False
|
| 75 |
+
|
| 76 |
+
frame_prediction: bool = False
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class RMSNorm(torch.nn.Module):
|
| 80 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.eps = eps
|
| 83 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 84 |
+
|
| 85 |
+
@torch.autocast(device_type='cuda', enabled=False)
|
| 86 |
+
def _norm(self, x):
|
| 87 |
+
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
output = self._norm(x.float()).type_as(x)
|
| 91 |
+
return output * self.weight
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class MLP(nn.Module):
|
| 95 |
+
def __init__(self, in_features, hidden_features, out_features):
|
| 96 |
+
super().__init__()
|
| 97 |
+
out_features = out_features or in_features
|
| 98 |
+
hidden_features = hidden_features or in_features
|
| 99 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
|
| 100 |
+
self.act = nn.GELU(approximate='tanh')
|
| 101 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
| 102 |
+
|
| 103 |
+
def forward(self, x):
|
| 104 |
+
x = self.fc1(x)
|
| 105 |
+
x = self.act(x)
|
| 106 |
+
x = self.fc2(x)
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
#################################################################################
|
| 111 |
+
# Drop Path Implementation #
|
| 112 |
+
#################################################################################
|
| 113 |
+
|
| 114 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
| 115 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 116 |
+
|
| 117 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
| 118 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 119 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
| 120 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 121 |
+
'survival rate' as the argument.
|
| 122 |
+
|
| 123 |
+
"""
|
| 124 |
+
if drop_prob == 0. or not training:
|
| 125 |
+
return x
|
| 126 |
+
keep_prob = 1 - drop_prob
|
| 127 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 128 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 129 |
+
if keep_prob > 0.0 and scale_by_keep:
|
| 130 |
+
random_tensor.div_(keep_prob)
|
| 131 |
+
return x * random_tensor
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class DropPath(torch.nn.Module):
|
| 135 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 136 |
+
"""
|
| 137 |
+
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
|
| 138 |
+
super(DropPath, self).__init__()
|
| 139 |
+
self.drop_prob = drop_prob
|
| 140 |
+
self.scale_by_keep = scale_by_keep
|
| 141 |
+
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
| 144 |
+
|
| 145 |
+
def extra_repr(self):
|
| 146 |
+
return f'drop_prob={round(self.drop_prob,3):0.3f}'
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
#################################################################################
|
| 150 |
+
# AR Model #
|
| 151 |
+
#################################################################################
|
| 152 |
+
|
| 153 |
+
class FeedForward(nn.Module):
|
| 154 |
+
def __init__(self, config: ModelArgs):
|
| 155 |
+
super().__init__()
|
| 156 |
+
hidden_dim = 4 * config.dim
|
| 157 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 158 |
+
# custom dim factor multiplier
|
| 159 |
+
if config.ffn_dim_multiplier is not None:
|
| 160 |
+
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
|
| 161 |
+
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
|
| 162 |
+
|
| 163 |
+
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 164 |
+
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 165 |
+
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
|
| 166 |
+
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
|
| 167 |
+
|
| 168 |
+
def forward(self, x):
|
| 169 |
+
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class KVCache(nn.Module):
|
| 173 |
+
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
|
| 174 |
+
super().__init__()
|
| 175 |
+
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
|
| 176 |
+
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 177 |
+
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 178 |
+
|
| 179 |
+
def update(self, input_pos, k_val, v_val):
|
| 180 |
+
# input_pos: [S], k_val: [B, H, S, D]
|
| 181 |
+
assert input_pos.shape[0] == k_val.shape[2], f"{input_pos.shape[0]} != {k_val.shape[2]}"
|
| 182 |
+
k_out = self.k_cache
|
| 183 |
+
v_out = self.v_cache
|
| 184 |
+
k_out[:, :, input_pos] = k_val.to(k_out.dtype)
|
| 185 |
+
v_out[:, :, input_pos] = v_val.to(v_out.dtype)
|
| 186 |
+
|
| 187 |
+
return k_out, v_out
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class Attention(nn.Module):
|
| 191 |
+
def __init__(self, config: ModelArgs):
|
| 192 |
+
super().__init__()
|
| 193 |
+
assert config.dim % config.n_head == 0
|
| 194 |
+
self.dim = config.dim
|
| 195 |
+
self.head_dim = config.dim // config.n_head
|
| 196 |
+
self.n_head = config.n_head
|
| 197 |
+
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
|
| 198 |
+
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
|
| 199 |
+
|
| 200 |
+
# key, query, value projections for all heads, but in a batch
|
| 201 |
+
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
|
| 202 |
+
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
| 203 |
+
self.kv_cache = None
|
| 204 |
+
|
| 205 |
+
# regularization
|
| 206 |
+
self.attn_dropout_p = config.attn_dropout_p
|
| 207 |
+
self.resid_dropout = nn.Dropout(config.resid_dropout_p)
|
| 208 |
+
|
| 209 |
+
def forward(
|
| 210 |
+
self, x: torch.Tensor,
|
| 211 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 212 |
+
mask: Optional[torch.Tensor] = None
|
| 213 |
+
):
|
| 214 |
+
bsz, seqlen, _ = x.shape
|
| 215 |
+
kv_size = self.n_kv_head * self.head_dim
|
| 216 |
+
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
| 217 |
+
|
| 218 |
+
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 219 |
+
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 220 |
+
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 221 |
+
|
| 222 |
+
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 223 |
+
|
| 224 |
+
if self.kv_cache is not None:
|
| 225 |
+
keys, values = self.kv_cache.update(input_pos, xk, xv)
|
| 226 |
+
else:
|
| 227 |
+
keys, values = xk, xv
|
| 228 |
+
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 229 |
+
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 230 |
+
|
| 231 |
+
output = F.scaled_dot_product_attention(
|
| 232 |
+
xq, keys, values,
|
| 233 |
+
attn_mask=mask,
|
| 234 |
+
is_causal=True if mask is None else False, # is_causal=False is for KV cache
|
| 235 |
+
dropout_p=self.attn_dropout_p if self.training else 0)
|
| 236 |
+
|
| 237 |
+
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
|
| 238 |
+
|
| 239 |
+
output = self.resid_dropout(self.wo(output))
|
| 240 |
+
return output
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
class TransformerBlock(nn.Module):
|
| 244 |
+
def __init__(self, config: ModelArgs, drop_path: float):
|
| 245 |
+
super().__init__()
|
| 246 |
+
self.attention = Attention(config)
|
| 247 |
+
self.feed_forward = FeedForward(config)
|
| 248 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 249 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 250 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 251 |
+
|
| 252 |
+
def forward(
|
| 253 |
+
self, x: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
|
| 254 |
+
h = x + self.drop_path(self.attention(self.attention_norm(x), start_pos, mask))
|
| 255 |
+
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
|
| 256 |
+
return out
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class LabelEmbedder(nn.Module):
|
| 260 |
+
"""
|
| 261 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
| 262 |
+
"""
|
| 263 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
| 264 |
+
super().__init__()
|
| 265 |
+
use_cfg_embedding = dropout_prob > 0
|
| 266 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 267 |
+
self.num_classes = num_classes
|
| 268 |
+
self.dropout_prob = dropout_prob
|
| 269 |
+
|
| 270 |
+
def token_drop(self, labels, force_drop_ids=None):
|
| 271 |
+
"""
|
| 272 |
+
Drops labels to enable classifier-free guidance.
|
| 273 |
+
"""
|
| 274 |
+
if force_drop_ids is None:
|
| 275 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 276 |
+
else:
|
| 277 |
+
drop_ids = force_drop_ids == 1
|
| 278 |
+
labels = torch.where(drop_ids, self.num_classes, labels)
|
| 279 |
+
return labels
|
| 280 |
+
|
| 281 |
+
def forward(self, labels, train, force_drop_ids=None):
|
| 282 |
+
use_dropout = self.dropout_prob > 0
|
| 283 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 284 |
+
labels = self.token_drop(labels, force_drop_ids)
|
| 285 |
+
|
| 286 |
+
# replace all negative labels with the last class (unconditional class)
|
| 287 |
+
labels = torch.where(labels < 0, self.num_classes, labels)
|
| 288 |
+
embeddings = self.embedding_table(labels)
|
| 289 |
+
return embeddings
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class ARModel(nn.Module):
|
| 293 |
+
def __init__(self, config: ModelArgs):
|
| 294 |
+
super().__init__()
|
| 295 |
+
self.config = config
|
| 296 |
+
self.vocab_size = config.vocab_size
|
| 297 |
+
self.n_layer = config.n_layer
|
| 298 |
+
self.max_seq_length = config.max_seq_len
|
| 299 |
+
self.num_classes = config.num_classes
|
| 300 |
+
self.model_type = config.model_type
|
| 301 |
+
self.cls_token_num = config.cls_token_num
|
| 302 |
+
self.is_sampling = False
|
| 303 |
+
self.frame_prediction = config.frame_prediction
|
| 304 |
+
|
| 305 |
+
if self.model_type == 'class_cond':
|
| 306 |
+
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
|
| 307 |
+
elif self.model_type == 'clip_cond':
|
| 308 |
+
self.clip_proj = nn.Linear(config.cond_dim, config.dim)
|
| 309 |
+
elif self.model_type == 'indice_cond':
|
| 310 |
+
self.clip_proj = LabelEmbedder(config.cond_vocab_size + 1, config.dim, 0.0)
|
| 311 |
+
else:
|
| 312 |
+
raise Exception("please check model type")
|
| 313 |
+
|
| 314 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 315 |
+
self.tok_dropout = nn.Dropout(config.token_dropout_p)
|
| 316 |
+
|
| 317 |
+
# transformer blocks
|
| 318 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
|
| 319 |
+
self.layers = torch.nn.ModuleList()
|
| 320 |
+
for layer_id in range(config.n_layer):
|
| 321 |
+
self.layers.append(TransformerBlock(config, dpr[layer_id]))
|
| 322 |
+
|
| 323 |
+
# output layer
|
| 324 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 325 |
+
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
|
| 326 |
+
|
| 327 |
+
if config.use_fixed_pe:
|
| 328 |
+
self.register_buffer('abs_pe', torch.zeros(1, config.max_seq_len + config.cls_token_num - 1, config.dim))
|
| 329 |
+
abs_pe = get_1d_sincos_pos_embed_from_grid(embed_dim=config.dim, pos=np.arange(config.max_seq_len + config.cls_token_num - 1))
|
| 330 |
+
self.abs_pe.copy_(torch.from_numpy(abs_pe).float().reshape_as(self.abs_pe))
|
| 331 |
+
print(f"Using fixed absolute PE")
|
| 332 |
+
else:
|
| 333 |
+
self.abs_pe = nn.Parameter(torch.randn(1, config.max_seq_len + config.cls_token_num - 1, config.dim) * 0.02)
|
| 334 |
+
print(f"Using learned absolute PE")
|
| 335 |
+
|
| 336 |
+
self.initialize_weights()
|
| 337 |
+
|
| 338 |
+
def initialize_weights(self):
|
| 339 |
+
# Initialize nn.Linear and nn.Embedding
|
| 340 |
+
self.apply(self._init_weights)
|
| 341 |
+
|
| 342 |
+
# Zero-out output layers:
|
| 343 |
+
if hasattr(self.output, 'weight') and isinstance(self.output.weight, nn.Parameter):
|
| 344 |
+
nn.init.constant_(self.output.weight, 0)
|
| 345 |
+
|
| 346 |
+
def _init_weights(self, module):
|
| 347 |
+
std = self.config.initializer_range
|
| 348 |
+
if isinstance(module, nn.Linear):
|
| 349 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 350 |
+
if module.bias is not None:
|
| 351 |
+
module.bias.data.zero_()
|
| 352 |
+
elif isinstance(module, nn.Embedding):
|
| 353 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
@property
|
| 357 |
+
def device(self):
|
| 358 |
+
return next(self.parameters()).device
|
| 359 |
+
|
| 360 |
+
@property
|
| 361 |
+
def dtype(self):
|
| 362 |
+
return next(self.parameters()).dtype
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
@contextmanager
|
| 366 |
+
def sampling(self):
|
| 367 |
+
self.is_sampling = True
|
| 368 |
+
try:
|
| 369 |
+
yield
|
| 370 |
+
finally:
|
| 371 |
+
self.is_sampling = False
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
def setup_caches(self, max_batch_size, max_seq_length, dtype):
|
| 375 |
+
assert max_seq_length == self.max_seq_length + self.cls_token_num, f'{max_seq_length} != {self.max_seq_length} + {self.cls_token_num=}'
|
| 376 |
+
|
| 377 |
+
head_dim = self.config.dim // self.config.n_head
|
| 378 |
+
max_seq_length = find_multiple(max_seq_length, 8)
|
| 379 |
+
|
| 380 |
+
for b in self.layers:
|
| 381 |
+
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)
|
| 382 |
+
|
| 383 |
+
causal_mask = torch.tril(torch.ones(max_seq_length, max_seq_length, dtype=torch.bool))
|
| 384 |
+
self.causal_mask = causal_mask.unsqueeze(0).repeat(max_batch_size, 1, 1)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
def reset_caches(self):
|
| 388 |
+
for b in self.layers:
|
| 389 |
+
b.attention.kv_cache = None
|
| 390 |
+
|
| 391 |
+
def clip_embedding(self, x):
|
| 392 |
+
if self.model_type == 'clip_cond':
|
| 393 |
+
if self.training and self.config.class_dropout_prob > 0:
|
| 394 |
+
drop_ids = torch.rand(x.shape[0], device=x.device) < self.config.class_dropout_prob
|
| 395 |
+
x[drop_ids] = 0.
|
| 396 |
+
x = self.clip_proj(x.to(self.dtype)) # Linear
|
| 397 |
+
elif self.model_type == 'indice_cond':
|
| 398 |
+
if self.training and self.config.class_dropout_prob > 0:
|
| 399 |
+
drop_ids = torch.rand(x.shape[0], device=x.device) < self.config.class_dropout_prob
|
| 400 |
+
x[drop_ids] = self.config.cond_vocab_size
|
| 401 |
+
x = self.clip_proj(x, train=self.training) # Embedding
|
| 402 |
+
return x
|
| 403 |
+
|
| 404 |
+
def forward(
|
| 405 |
+
self,
|
| 406 |
+
idx: Optional[torch.Tensor], # (b, n)
|
| 407 |
+
cond_idx: Optional[torch.Tensor], # cond_idx_or_embed
|
| 408 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 409 |
+
targets: Optional[torch.Tensor] = None,
|
| 410 |
+
mask: Optional[torch.Tensor] = None,
|
| 411 |
+
valid: Optional[torch.Tensor] = None,
|
| 412 |
+
):
|
| 413 |
+
if idx is not None and cond_idx is not None: # training or naive inference
|
| 414 |
+
if self.model_type == 'class_cond':
|
| 415 |
+
cond_embeddings = self.cls_embedding(cond_idx, train=self.training).unsqueeze(1)[:,:self.cls_token_num]
|
| 416 |
+
elif self.model_type in ['clip_cond', 'indice_cond']:
|
| 417 |
+
cond_embeddings = self.clip_embedding(cond_idx)
|
| 418 |
+
token_embeddings = self.tok_embeddings(idx) # (b, n, d)
|
| 419 |
+
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1) # (b, cls_token_num + n, d)
|
| 420 |
+
h = self.tok_dropout(token_embeddings)
|
| 421 |
+
else:
|
| 422 |
+
if cond_idx is not None: # prefill in inference
|
| 423 |
+
if self.model_type == 'class_cond':
|
| 424 |
+
token_embeddings = self.cls_embedding(cond_idx, train=self.training).unsqueeze(1)[:,:self.cls_token_num]
|
| 425 |
+
elif self.model_type in ['clip_cond', 'indice_cond']:
|
| 426 |
+
token_embeddings = self.clip_embedding(cond_idx)
|
| 427 |
+
else: # decode_n_tokens(kv cache) in inference
|
| 428 |
+
token_embeddings = self.tok_embeddings(idx)
|
| 429 |
+
|
| 430 |
+
bs = token_embeddings.shape[0]
|
| 431 |
+
mask = self.causal_mask[:bs, None, input_pos]
|
| 432 |
+
h = self.tok_dropout(token_embeddings)
|
| 433 |
+
|
| 434 |
+
if self.is_sampling:
|
| 435 |
+
h = h + self.abs_pe[:, input_pos]
|
| 436 |
+
else:
|
| 437 |
+
h = h + self.abs_pe[:, :h.shape[1]]
|
| 438 |
+
|
| 439 |
+
# transformer blocks
|
| 440 |
+
for layer in self.layers:
|
| 441 |
+
h = layer(h, input_pos, mask)
|
| 442 |
+
|
| 443 |
+
# output layers
|
| 444 |
+
h = self.norm(h)
|
| 445 |
+
logits = self.output(h)
|
| 446 |
+
# if self.training or self.is_sampling:
|
| 447 |
+
if cond_idx is not None:
|
| 448 |
+
# if self.training:
|
| 449 |
+
# logits = logits[:, self.cls_token_num - 1:].contiguous()
|
| 450 |
+
logits = logits[:, cond_idx.size(1) - 1:].contiguous()
|
| 451 |
+
|
| 452 |
+
# if we are given some desired targets also calculate the loss
|
| 453 |
+
loss = None
|
| 454 |
+
if valid is not None:
|
| 455 |
+
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
|
| 456 |
+
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
|
| 457 |
+
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
|
| 458 |
+
elif targets is not None:
|
| 459 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
| 460 |
+
return logits, loss
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
@torch.inference_mode()
|
| 464 |
+
def sample(
|
| 465 |
+
self,
|
| 466 |
+
c,
|
| 467 |
+
cfg_scale=2.0,
|
| 468 |
+
cfg_interval=-1,
|
| 469 |
+
temperature=1.0,
|
| 470 |
+
top_k=0,
|
| 471 |
+
top_p=1.0,
|
| 472 |
+
seq_length=None,
|
| 473 |
+
):
|
| 474 |
+
seq_length = self.max_seq_length if seq_length is None else seq_length
|
| 475 |
+
with self.sampling():
|
| 476 |
+
sampled_seqs = ar_generate(
|
| 477 |
+
self, c, seq_length,
|
| 478 |
+
cfg_scale=cfg_scale, cfg_interval=cfg_interval,
|
| 479 |
+
temperature=temperature, top_k=top_k,
|
| 480 |
+
top_p=top_p, sample_logits=True,
|
| 481 |
+
)
|
| 482 |
+
return sampled_seqs
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
@classmethod
|
| 486 |
+
def from_checkpoint(cls, ckpt, load_state_dict=True):
|
| 487 |
+
if isinstance(ckpt, str):
|
| 488 |
+
assert os.path.exists(ckpt), f"checkpoint {ckpt} does not exist"
|
| 489 |
+
ckpt = torch.load(ckpt, map_location=lambda storage, loc: storage)
|
| 490 |
+
else:
|
| 491 |
+
assert isinstance(
|
| 492 |
+
ckpt, dict
|
| 493 |
+
), f"checkpoint must be a dict or a path to a checkpoint"
|
| 494 |
+
model = models.make(ckpt["model"], load_sd=load_state_dict)
|
| 495 |
+
return model
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
#################################################################################
|
| 499 |
+
# LLAMA-ABS Configs #
|
| 500 |
+
#################################################################################
|
| 501 |
+
|
| 502 |
+
def LLAMA_ABS_XXXL(**kwargs):
|
| 503 |
+
return ARModel(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
|
| 504 |
+
|
| 505 |
+
def LLAMA_ABS_XXL(**kwargs):
|
| 506 |
+
return ARModel(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
|
| 507 |
+
|
| 508 |
+
def LLAMA_ABS_XL(**kwargs):
|
| 509 |
+
return ARModel(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
|
| 510 |
+
|
| 511 |
+
def LLAMA_ABS_LP(**kwargs):
|
| 512 |
+
return ARModel(ModelArgs(n_layer=30, n_head=20, dim=1280, **kwargs)) # 632M
|
| 513 |
+
|
| 514 |
+
def LLAMA_ABS_L(**kwargs):
|
| 515 |
+
return ARModel(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
|
| 516 |
+
|
| 517 |
+
def LLAMA_ABS_B(**kwargs):
|
| 518 |
+
return ARModel(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
|
| 519 |
+
|
| 520 |
+
def LLAMA_ABS_S(**kwargs):
|
| 521 |
+
return ARModel(ModelArgs(n_layer=12, n_head=6, dim=384, **kwargs)) # 21.7M
|
| 522 |
+
|
| 523 |
+
ar_models = {
|
| 524 |
+
'llama-abs-S': LLAMA_ABS_S,
|
| 525 |
+
'llama-abs-B': LLAMA_ABS_B,
|
| 526 |
+
'llama-abs-L': LLAMA_ABS_L,
|
| 527 |
+
'llama-abs-LP': LLAMA_ABS_LP,
|
| 528 |
+
'llama-abs-XL': LLAMA_ABS_XL,
|
| 529 |
+
'llama-abs-XXL': LLAMA_ABS_XXL,
|
| 530 |
+
'llama-abs-XXXL': LLAMA_ABS_XXXL,
|
| 531 |
+
}
|
| 532 |
+
|
| 533 |
+
models.models.update(ar_models)
|
tok/ar_dtok/bottleneck.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
|
| 6 |
+
from .. import models
|
| 7 |
+
from ..models import register
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@register("bottleneck")
|
| 11 |
+
class Bottleneck(nn.Module):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
bottleneck_dim: int,
|
| 15 |
+
input_dim: int,
|
| 16 |
+
output_dim: int,
|
| 17 |
+
token_nums: int,
|
| 18 |
+
regularizer=None,
|
| 19 |
+
**kwargs
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.token_nums = token_nums
|
| 23 |
+
self.input_dim = input_dim
|
| 24 |
+
self.output_dim = output_dim
|
| 25 |
+
if bottleneck_dim > 0:
|
| 26 |
+
self.bottleneck_dim = bottleneck_dim
|
| 27 |
+
else:
|
| 28 |
+
assert self.input_dim == self.output_dim, "input_dim and output_dim must be the same when bottleneck_dim is not specified"
|
| 29 |
+
self.bottleneck_dim = self.input_dim
|
| 30 |
+
|
| 31 |
+
self.project_dim = self.bottleneck_dim
|
| 32 |
+
|
| 33 |
+
if self.bottleneck_dim > 0:
|
| 34 |
+
self.in_linear = nn.Linear(self.input_dim, self.project_dim)
|
| 35 |
+
self.out_linear = nn.Linear(self.bottleneck_dim, self.output_dim)
|
| 36 |
+
else:
|
| 37 |
+
self.in_linear = self.out_linear = lambda x: x
|
| 38 |
+
|
| 39 |
+
regularizer['args']['dim'] = self.bottleneck_dim
|
| 40 |
+
regularizer['args']['token_nums'] = self.token_nums
|
| 41 |
+
self.regularizer = models.make(regularizer)
|
| 42 |
+
|
| 43 |
+
def project_in(self, x):
|
| 44 |
+
assert len(x.shape) == 3, "Input shape must be (batch, n_tokens, e_dim)"
|
| 45 |
+
z = self.in_linear(x)
|
| 46 |
+
return z
|
| 47 |
+
|
| 48 |
+
def project_out(self, z_cat):
|
| 49 |
+
z = self.out_linear(z_cat)
|
| 50 |
+
return z
|
| 51 |
+
|
| 52 |
+
def decode(self, bottleneck_rep):
|
| 53 |
+
regularized_z = self.regularizer.decode(bottleneck_rep)
|
| 54 |
+
return self.project_out(regularized_z)
|
| 55 |
+
|
| 56 |
+
def forward(self, x):
|
| 57 |
+
z = self.project_in(x)
|
| 58 |
+
projected_z = z
|
| 59 |
+
regularized_output = self.regularizer(z)
|
| 60 |
+
x_hat = self.project_out(regularized_output['regularized_z'])
|
| 61 |
+
bottleneck_rep = regularized_output.pop('bottleneck_rep')
|
| 62 |
+
return {
|
| 63 |
+
'output': x_hat,
|
| 64 |
+
'bottleneck_rep': bottleneck_rep,
|
| 65 |
+
'projected_z': projected_z,
|
| 66 |
+
**regularized_output,
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@register("simvq")
|
| 71 |
+
class SimVectorQuantizer(nn.Module):
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
dim,
|
| 75 |
+
codebook_size,
|
| 76 |
+
l2_normalized=False,
|
| 77 |
+
same_index_shape=True,
|
| 78 |
+
stochastic=False,
|
| 79 |
+
stochastic_temperature=1.0,
|
| 80 |
+
**kwargs,
|
| 81 |
+
):
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.codebook_size = codebook_size
|
| 84 |
+
self.dim = dim
|
| 85 |
+
assert isinstance(l2_normalized, bool)
|
| 86 |
+
self.l2_normalized = l2_normalized
|
| 87 |
+
self.stochastic = stochastic
|
| 88 |
+
self.eval_deterministic = False
|
| 89 |
+
self.default_stochastic_temperature = stochastic_temperature
|
| 90 |
+
|
| 91 |
+
if self.stochastic:
|
| 92 |
+
if stochastic_temperature > 0: # fixed temperature
|
| 93 |
+
self.stochastic_temperature_inv = 1 / stochastic_temperature
|
| 94 |
+
else: # set stochastic_temperature < 0 to use learnable temperature
|
| 95 |
+
self.stochastic_temperature_inv = nn.Parameter(torch.tensor(10.0))
|
| 96 |
+
|
| 97 |
+
# for clear inference code, we remove the codebook init from LLM's embedding
|
| 98 |
+
self.embedding = nn.Embedding(self.codebook_size, self.dim)
|
| 99 |
+
self.embedding_proj = nn.Linear(self.dim, self.dim)
|
| 100 |
+
|
| 101 |
+
self.same_index_shape = same_index_shape
|
| 102 |
+
|
| 103 |
+
def set_eval_deterministic(self, deterministic=True):
|
| 104 |
+
self.eval_deterministic = deterministic
|
| 105 |
+
|
| 106 |
+
def set_stochastic_temperature(self, temperature):
|
| 107 |
+
self.stochastic_temperature_inv = 1 / temperature
|
| 108 |
+
|
| 109 |
+
@torch.autocast(device_type='cuda', enabled=False)
|
| 110 |
+
def get_emb(self):
|
| 111 |
+
emb = self.embedding_proj(self.embedding.weight)
|
| 112 |
+
if self.l2_normalized:
|
| 113 |
+
emb = F.normalize(emb, p=2, dim=-1)
|
| 114 |
+
# assert emb.dtype == torch.float32, f"Embedding weight dtype is {emb.dtype}, expected float32"
|
| 115 |
+
return emb
|
| 116 |
+
|
| 117 |
+
@torch.autocast(device_type='cuda', enabled=False)
|
| 118 |
+
def forward(self, z):
|
| 119 |
+
emb = self.get_emb()
|
| 120 |
+
z = z.to(emb)
|
| 121 |
+
# z = z.float()
|
| 122 |
+
assert len(z.shape) == 3, "Input shape must be (batch, n_tokens, e_dim)"
|
| 123 |
+
if self.l2_normalized:
|
| 124 |
+
z = F.normalize(z, p=2, dim=-1)
|
| 125 |
+
|
| 126 |
+
z_flattened = rearrange(z, 'b n d -> (b n) d')
|
| 127 |
+
|
| 128 |
+
if self.stochastic:
|
| 129 |
+
# sample the softmaxed cosine similarity
|
| 130 |
+
assert self.l2_normalized, "Stochastic sampling requires l2 normalization"
|
| 131 |
+
cos_sim = torch.einsum("bd,nd->bn", z_flattened, emb)
|
| 132 |
+
probs = F.softmax(cos_sim * self.stochastic_temperature_inv, dim=-1)
|
| 133 |
+
if self.eval_deterministic and not self.training:
|
| 134 |
+
q_indices = torch.argmax(probs, dim=-1)
|
| 135 |
+
else:
|
| 136 |
+
q_indices = torch.multinomial(probs, 1).squeeze(-1)
|
| 137 |
+
else:
|
| 138 |
+
d = (
|
| 139 |
+
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
| 140 |
+
+ torch.sum(emb**2, dim=1)
|
| 141 |
+
- 2
|
| 142 |
+
* torch.einsum(
|
| 143 |
+
"bd,dn->bn", z_flattened, rearrange(emb, "n d -> d n")
|
| 144 |
+
)
|
| 145 |
+
)
|
| 146 |
+
q_indices = torch.argmin(d, dim=1)
|
| 147 |
+
|
| 148 |
+
quantized = F.embedding(q_indices, emb, self.embedding.padding_idx, self.embedding.max_norm,
|
| 149 |
+
self.embedding.norm_type, self.embedding.scale_grad_by_freq, self.embedding.sparse).view(z.shape) # (b, n, d)
|
| 150 |
+
|
| 151 |
+
# preserve gradients
|
| 152 |
+
quantized = z + (quantized - z).detach()
|
| 153 |
+
|
| 154 |
+
if self.same_index_shape:
|
| 155 |
+
q_indices = q_indices.reshape(quantized.shape[0], quantized.shape[1])
|
| 156 |
+
|
| 157 |
+
return_dict = {
|
| 158 |
+
'unregularized_z': z, # but l2 normalized if l2_normalized=True
|
| 159 |
+
'emb': emb, # but l2 normalized if l2_normalized=True
|
| 160 |
+
'regularized_z': quantized,
|
| 161 |
+
'bottleneck_rep': q_indices
|
| 162 |
+
}
|
| 163 |
+
return return_dict
|
| 164 |
+
|
| 165 |
+
def get_codebook_entry(self, indices, shape=None):
|
| 166 |
+
# shape specifying (batch, height, width, channel)
|
| 167 |
+
indices_shape = indices.shape
|
| 168 |
+
indices_flatten = rearrange(indices, '... -> (...)')
|
| 169 |
+
|
| 170 |
+
# get quantized latent vectors
|
| 171 |
+
emb = self.get_emb()
|
| 172 |
+
z_q = F.embedding(indices_flatten, emb)
|
| 173 |
+
# z_q = self.embedding(indices_flatten)
|
| 174 |
+
if self.l2_normalized:
|
| 175 |
+
z_q = F.normalize(z_q, p=2, dim=-1)
|
| 176 |
+
|
| 177 |
+
if shape is not None:
|
| 178 |
+
z_q = z_q.reshape(shape)
|
| 179 |
+
else:
|
| 180 |
+
z_q = z_q.reshape([*indices_shape, self.dim])
|
| 181 |
+
return z_q
|
| 182 |
+
|
| 183 |
+
def decode(self, indices):
|
| 184 |
+
return self.get_codebook_entry(indices)
|
tok/ar_dtok/generate.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# llamagen: https://github.com/FoundationVision/LlamaGen/blob/main/autoregressive/models/generate.py
|
| 3 |
+
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
|
| 4 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch._dynamo.config
|
| 9 |
+
import torch._inductor.config
|
| 10 |
+
from torch.nn import functional as F
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
|
| 14 |
+
def top_k_top_p_filtering(
|
| 15 |
+
logits,
|
| 16 |
+
top_k: int = 0,
|
| 17 |
+
top_p: float = 1.0,
|
| 18 |
+
filter_value: float = -float("Inf"),
|
| 19 |
+
min_tokens_to_keep: int = 1,
|
| 20 |
+
):
|
| 21 |
+
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
| 22 |
+
Args:
|
| 23 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
| 24 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
| 25 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
| 26 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
| 27 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
| 28 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
| 29 |
+
"""
|
| 30 |
+
if top_k > 0:
|
| 31 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
| 32 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
| 33 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 34 |
+
logits[indices_to_remove] = filter_value
|
| 35 |
+
|
| 36 |
+
if top_p < 1.0:
|
| 37 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 38 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 39 |
+
|
| 40 |
+
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
| 41 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 42 |
+
if min_tokens_to_keep > 1:
|
| 43 |
+
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
| 44 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
| 45 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
| 46 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 47 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 48 |
+
|
| 49 |
+
# scatter sorted tensors to original indexing
|
| 50 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 51 |
+
logits[indices_to_remove] = filter_value
|
| 52 |
+
return logits
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def sample(logits, temperature: float=1.0, top_k: int=0, top_p: float=1.0, sample_logits=True):
|
| 56 |
+
logits = logits[:, -1, :] / max(temperature, 1e-5)
|
| 57 |
+
if top_k > 0 or top_p < 1.0:
|
| 58 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 59 |
+
|
| 60 |
+
# improve numerical stability of softmax
|
| 61 |
+
probs = F.softmax(logits.float(), dim=-1)
|
| 62 |
+
if sample_logits:
|
| 63 |
+
idx = torch.multinomial(probs, num_samples=1)
|
| 64 |
+
else:
|
| 65 |
+
_, idx = torch.topk(probs, k=1, dim=-1)
|
| 66 |
+
return idx, probs
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def logits_to_probs(logits, temperature: float = 1.0, top_p: float=1.0, top_k: int = None, **kwargs):
|
| 70 |
+
logits = logits / max(temperature, 1e-5)
|
| 71 |
+
if top_k > 0 or top_p < 1.0:
|
| 72 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 73 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 74 |
+
return probs
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def prefill(model, cond_idx: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, **sampling_kwargs):
|
| 78 |
+
if cfg_scale > 1.0:
|
| 79 |
+
logits, _ = model(None, cond_idx, input_pos)
|
| 80 |
+
logits_combined = logits
|
| 81 |
+
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
|
| 82 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
| 83 |
+
else:
|
| 84 |
+
logits, _ = model(None, cond_idx, input_pos)
|
| 85 |
+
|
| 86 |
+
return sample(logits, **sampling_kwargs)[0]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def decode_one_token(model, x: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, cfg_flag: bool, **sampling_kwargs):
|
| 90 |
+
assert input_pos.shape[-1] == 1
|
| 91 |
+
if cfg_scale > 1.0:
|
| 92 |
+
x_combined = torch.cat([x, x])
|
| 93 |
+
logits, _ = model(x_combined, cond_idx=None, input_pos=input_pos)
|
| 94 |
+
logits_combined = logits
|
| 95 |
+
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
|
| 96 |
+
if cfg_flag:
|
| 97 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
| 98 |
+
else:
|
| 99 |
+
logits = cond_logits
|
| 100 |
+
else:
|
| 101 |
+
logits, _ = model(x, cond_idx=None, input_pos=input_pos)
|
| 102 |
+
return sample(logits, **sampling_kwargs)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def decode_n_tokens(
|
| 106 |
+
model, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int,
|
| 107 |
+
cfg_scale: float, cfg_interval: int,
|
| 108 |
+
**sampling_kwargs):
|
| 109 |
+
new_tokens, new_probs = [], []
|
| 110 |
+
cfg_flag = True
|
| 111 |
+
for i in range(num_new_tokens):
|
| 112 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
|
| 113 |
+
if cfg_interval > -1 and i > cfg_interval:
|
| 114 |
+
cfg_flag = False
|
| 115 |
+
next_token, next_prob = decode_one_token(
|
| 116 |
+
model, cur_token, input_pos, cfg_scale, cfg_flag, **sampling_kwargs
|
| 117 |
+
)
|
| 118 |
+
input_pos += 1
|
| 119 |
+
new_tokens.append(next_token.clone())
|
| 120 |
+
new_probs.append(next_prob.clone())
|
| 121 |
+
cur_token = next_token.view(-1, 1)
|
| 122 |
+
|
| 123 |
+
return new_tokens, new_probs
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
@torch.no_grad()
|
| 127 |
+
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, **sampling_kwargs):
|
| 128 |
+
if model.frame_prediction:
|
| 129 |
+
assert cfg_scale == 1.0, "frame prediction requires cfg_scale=1.0 (no classifier-free guidance)"
|
| 130 |
+
cond_combined = cond
|
| 131 |
+
T = cond.shape[1]
|
| 132 |
+
elif model.model_type == 'class_cond':
|
| 133 |
+
if cfg_scale > 1.0:
|
| 134 |
+
cond_null = torch.ones_like(cond) * model.num_classes
|
| 135 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 136 |
+
else:
|
| 137 |
+
cond_combined = cond
|
| 138 |
+
T = 1
|
| 139 |
+
elif model.model_type == 'clip_cond':
|
| 140 |
+
if cfg_scale > 1.0:
|
| 141 |
+
cond_null = torch.zeros_like(cond)
|
| 142 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 143 |
+
else:
|
| 144 |
+
cond_combined = cond
|
| 145 |
+
T = model.cls_token_num
|
| 146 |
+
elif model.model_type == 'indice_cond':
|
| 147 |
+
if cfg_scale > 1.0:
|
| 148 |
+
cond_null = torch.ones_like(cond) * model.cond_vocab_size
|
| 149 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 150 |
+
else:
|
| 151 |
+
cond_combined = cond
|
| 152 |
+
T = model.cls_token_num
|
| 153 |
+
else:
|
| 154 |
+
raise Exception("please check model type")
|
| 155 |
+
|
| 156 |
+
T_new = T + max_new_tokens
|
| 157 |
+
max_seq_length = T_new
|
| 158 |
+
max_batch_size = cond.shape[0]
|
| 159 |
+
|
| 160 |
+
device = cond.device
|
| 161 |
+
with torch.device(device):
|
| 162 |
+
max_batch_size_cfg = max_batch_size * 2 if cfg_scale > 1.0 else max_batch_size
|
| 163 |
+
model.setup_caches(max_batch_size=max_batch_size_cfg, max_seq_length=max_seq_length, dtype=model.tok_embeddings.weight.dtype)
|
| 164 |
+
|
| 165 |
+
if emb_masks is not None:
|
| 166 |
+
assert emb_masks.shape[0] == max_batch_size
|
| 167 |
+
assert emb_masks.shape[-1] == T
|
| 168 |
+
if cfg_scale > 1.0:
|
| 169 |
+
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * torch.cat([emb_masks, emb_masks]).unsqueeze(1)
|
| 170 |
+
else:
|
| 171 |
+
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * emb_masks.unsqueeze(1)
|
| 172 |
+
|
| 173 |
+
eye_matrix = torch.eye(model.causal_mask.size(1), model.causal_mask.size(2), device=device)
|
| 174 |
+
model.causal_mask[:] = model.causal_mask * (1 - eye_matrix) + eye_matrix
|
| 175 |
+
|
| 176 |
+
# create an empty tensor of the expected final shape and fill in the current tokens
|
| 177 |
+
seq = torch.empty((max_batch_size, T_new), dtype=torch.int, device=device)
|
| 178 |
+
|
| 179 |
+
input_pos = torch.arange(0, T, device=device)
|
| 180 |
+
|
| 181 |
+
next_token = prefill(model, cond_combined, input_pos, cfg_scale, **sampling_kwargs)
|
| 182 |
+
seq[:, T:T+1] = next_token
|
| 183 |
+
|
| 184 |
+
input_pos = torch.tensor([T], device=device, dtype=torch.int)
|
| 185 |
+
generated_tokens, _ = decode_n_tokens(model, next_token, input_pos, max_new_tokens-1, cfg_scale, cfg_interval, **sampling_kwargs)
|
| 186 |
+
seq[:, T+1:] = torch.cat(generated_tokens, dim=1)
|
| 187 |
+
|
| 188 |
+
return seq[:, T:]
|
tok/ar_dtok/vqvae.py
ADDED
|
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass, field
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
from ..models import register
|
| 9 |
+
from ..utils import ScalingLayer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@register('vqvae')
|
| 13 |
+
class VQVAE(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
model='VQ-16',
|
| 17 |
+
ckpt='',
|
| 18 |
+
codebook_size=16384,
|
| 19 |
+
codebook_embed_dim=8,
|
| 20 |
+
bottleneck_token_num=256,
|
| 21 |
+
input_size=256,
|
| 22 |
+
*args,
|
| 23 |
+
**kwargs,
|
| 24 |
+
):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.codebook_size = codebook_size
|
| 27 |
+
self.codebook_embed_dim = codebook_embed_dim
|
| 28 |
+
self.bottleneck_token_num = bottleneck_token_num
|
| 29 |
+
self.input_size = input_size
|
| 30 |
+
self.model = VQ_models[model](
|
| 31 |
+
codebook_size=codebook_size,
|
| 32 |
+
codebook_embed_dim=codebook_embed_dim)
|
| 33 |
+
ckpt = torch.load(ckpt, map_location='cpu')
|
| 34 |
+
self.model.load_state_dict(ckpt['model'])
|
| 35 |
+
self.model.eval()
|
| 36 |
+
|
| 37 |
+
self.scale_layer = ScalingLayer(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 38 |
+
|
| 39 |
+
@classmethod
|
| 40 |
+
def from_checkpoint(cls, ckpt, **kwargs):
|
| 41 |
+
model = cls(ckpt=ckpt, **kwargs)
|
| 42 |
+
return model
|
| 43 |
+
|
| 44 |
+
def decode_from_bottleneck(self, z):
|
| 45 |
+
if z.ndim == 2:
|
| 46 |
+
b = z.size(0)
|
| 47 |
+
h = w = int(z.size(-1) ** 0.5)
|
| 48 |
+
z = self.model.decode_code(z, (b, self.codebook_embed_dim, h, w))
|
| 49 |
+
return self.scale_layer.inv(z)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Adapt from https://github.com/FoundationVision/LlamaGen/blob/main/tokenizer/tokenizer_image/vq_model.py
|
| 53 |
+
@dataclass
|
| 54 |
+
class ModelArgs:
|
| 55 |
+
codebook_size: int = 16384
|
| 56 |
+
codebook_embed_dim: int = 8
|
| 57 |
+
codebook_l2_norm: bool = True
|
| 58 |
+
codebook_show_usage: bool = True
|
| 59 |
+
commit_loss_beta: float = 0.25
|
| 60 |
+
entropy_loss_ratio: float = 0.0
|
| 61 |
+
|
| 62 |
+
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
| 63 |
+
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
| 64 |
+
z_channels: int = 256
|
| 65 |
+
dropout_p: float = 0.0
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class VQModel(nn.Module):
|
| 69 |
+
def __init__(self, config: ModelArgs):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.config = config
|
| 72 |
+
self.encoder = Encoder(ch_mult=config.encoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
| 73 |
+
self.decoder = Decoder(ch_mult=config.decoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
| 74 |
+
|
| 75 |
+
self.quantize = VectorQuantizer(config.codebook_size, config.codebook_embed_dim,
|
| 76 |
+
config.commit_loss_beta, config.entropy_loss_ratio,
|
| 77 |
+
config.codebook_l2_norm, config.codebook_show_usage)
|
| 78 |
+
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1)
|
| 79 |
+
self.post_quant_conv = nn.Conv2d(config.codebook_embed_dim, config.z_channels, 1)
|
| 80 |
+
|
| 81 |
+
def encode(self, x):
|
| 82 |
+
h = self.encoder(x)
|
| 83 |
+
h = self.quant_conv(h)
|
| 84 |
+
quant, emb_loss, info = self.quantize(h)
|
| 85 |
+
return quant, emb_loss, info
|
| 86 |
+
|
| 87 |
+
def decode(self, quant):
|
| 88 |
+
quant = self.post_quant_conv(quant)
|
| 89 |
+
dec = self.decoder(quant)
|
| 90 |
+
return dec
|
| 91 |
+
|
| 92 |
+
def decode_code(self, code_b, shape=None, channel_first=True):
|
| 93 |
+
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
|
| 94 |
+
dec = self.decode(quant_b)
|
| 95 |
+
return dec
|
| 96 |
+
|
| 97 |
+
def forward(self, input):
|
| 98 |
+
quant, diff, _ = self.encode(input)
|
| 99 |
+
dec = self.decode(quant)
|
| 100 |
+
return dec, diff
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class Encoder(nn.Module):
|
| 104 |
+
def __init__(self, in_channels=3, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2,
|
| 105 |
+
norm_type='group', dropout=0.0, resamp_with_conv=True, z_channels=256):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.num_resolutions = len(ch_mult)
|
| 108 |
+
self.num_res_blocks = num_res_blocks
|
| 109 |
+
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1)
|
| 110 |
+
|
| 111 |
+
# downsampling
|
| 112 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 113 |
+
self.conv_blocks = nn.ModuleList()
|
| 114 |
+
for i_level in range(self.num_resolutions):
|
| 115 |
+
conv_block = nn.Module()
|
| 116 |
+
# res & attn
|
| 117 |
+
res_block = nn.ModuleList()
|
| 118 |
+
attn_block = nn.ModuleList()
|
| 119 |
+
block_in = ch*in_ch_mult[i_level]
|
| 120 |
+
block_out = ch*ch_mult[i_level]
|
| 121 |
+
for _ in range(self.num_res_blocks):
|
| 122 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
| 123 |
+
block_in = block_out
|
| 124 |
+
if i_level == self.num_resolutions - 1:
|
| 125 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
| 126 |
+
conv_block.res = res_block
|
| 127 |
+
conv_block.attn = attn_block
|
| 128 |
+
# downsample
|
| 129 |
+
if i_level != self.num_resolutions-1:
|
| 130 |
+
conv_block.downsample = Downsample(block_in, resamp_with_conv)
|
| 131 |
+
self.conv_blocks.append(conv_block)
|
| 132 |
+
|
| 133 |
+
# middle
|
| 134 |
+
self.mid = nn.ModuleList()
|
| 135 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 136 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
| 137 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 138 |
+
|
| 139 |
+
# end
|
| 140 |
+
self.norm_out = Normalize(block_in, norm_type)
|
| 141 |
+
self.conv_out = nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1)
|
| 142 |
+
|
| 143 |
+
def forward(self, x):
|
| 144 |
+
h = self.conv_in(x)
|
| 145 |
+
# downsampling
|
| 146 |
+
for i_level, block in enumerate(self.conv_blocks):
|
| 147 |
+
for i_block in range(self.num_res_blocks):
|
| 148 |
+
h = block.res[i_block](h)
|
| 149 |
+
if len(block.attn) > 0:
|
| 150 |
+
h = block.attn[i_block](h)
|
| 151 |
+
if i_level != self.num_resolutions - 1:
|
| 152 |
+
h = block.downsample(h)
|
| 153 |
+
|
| 154 |
+
# middle
|
| 155 |
+
for mid_block in self.mid:
|
| 156 |
+
h = mid_block(h)
|
| 157 |
+
|
| 158 |
+
# end
|
| 159 |
+
h = self.norm_out(h)
|
| 160 |
+
h = nonlinearity(h)
|
| 161 |
+
h = self.conv_out(h)
|
| 162 |
+
return h
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class Decoder(nn.Module):
|
| 166 |
+
def __init__(self, z_channels=256, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2, norm_type="group",
|
| 167 |
+
dropout=0.0, resamp_with_conv=True, out_channels=3):
|
| 168 |
+
super().__init__()
|
| 169 |
+
self.num_resolutions = len(ch_mult)
|
| 170 |
+
self.num_res_blocks = num_res_blocks
|
| 171 |
+
|
| 172 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 173 |
+
# z to block_in
|
| 174 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
| 175 |
+
|
| 176 |
+
# middle
|
| 177 |
+
self.mid = nn.ModuleList()
|
| 178 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 179 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
| 180 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 181 |
+
|
| 182 |
+
# upsampling
|
| 183 |
+
self.conv_blocks = nn.ModuleList()
|
| 184 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 185 |
+
conv_block = nn.Module()
|
| 186 |
+
# res & attn
|
| 187 |
+
res_block = nn.ModuleList()
|
| 188 |
+
attn_block = nn.ModuleList()
|
| 189 |
+
block_out = ch*ch_mult[i_level]
|
| 190 |
+
for _ in range(self.num_res_blocks + 1):
|
| 191 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
| 192 |
+
block_in = block_out
|
| 193 |
+
if i_level == self.num_resolutions - 1:
|
| 194 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
| 195 |
+
conv_block.res = res_block
|
| 196 |
+
conv_block.attn = attn_block
|
| 197 |
+
# downsample
|
| 198 |
+
if i_level != 0:
|
| 199 |
+
conv_block.upsample = Upsample(block_in, resamp_with_conv)
|
| 200 |
+
self.conv_blocks.append(conv_block)
|
| 201 |
+
|
| 202 |
+
# end
|
| 203 |
+
self.norm_out = Normalize(block_in, norm_type)
|
| 204 |
+
self.conv_out = nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)
|
| 205 |
+
|
| 206 |
+
@property
|
| 207 |
+
def last_layer(self):
|
| 208 |
+
return self.conv_out.weight
|
| 209 |
+
|
| 210 |
+
def forward(self, z):
|
| 211 |
+
# z to block_in
|
| 212 |
+
h = self.conv_in(z)
|
| 213 |
+
|
| 214 |
+
# middle
|
| 215 |
+
for mid_block in self.mid:
|
| 216 |
+
h = mid_block(h)
|
| 217 |
+
|
| 218 |
+
# upsampling
|
| 219 |
+
for i_level, block in enumerate(self.conv_blocks):
|
| 220 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 221 |
+
h = block.res[i_block](h)
|
| 222 |
+
if len(block.attn) > 0:
|
| 223 |
+
h = block.attn[i_block](h)
|
| 224 |
+
if i_level != self.num_resolutions - 1:
|
| 225 |
+
h = block.upsample(h)
|
| 226 |
+
|
| 227 |
+
# end
|
| 228 |
+
h = self.norm_out(h)
|
| 229 |
+
h = nonlinearity(h)
|
| 230 |
+
h = self.conv_out(h)
|
| 231 |
+
return h
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
class VectorQuantizer(nn.Module):
|
| 235 |
+
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage):
|
| 236 |
+
super().__init__()
|
| 237 |
+
self.n_e = n_e
|
| 238 |
+
self.e_dim = e_dim
|
| 239 |
+
self.beta = beta
|
| 240 |
+
self.entropy_loss_ratio = entropy_loss_ratio
|
| 241 |
+
self.l2_norm = l2_norm
|
| 242 |
+
self.show_usage = show_usage
|
| 243 |
+
|
| 244 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
| 245 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 246 |
+
if self.l2_norm:
|
| 247 |
+
self.embedding.weight.data = F.normalize(self.embedding.weight.data, p=2, dim=-1)
|
| 248 |
+
if self.show_usage:
|
| 249 |
+
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536)))
|
| 250 |
+
|
| 251 |
+
def forward(self, z):
|
| 252 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 253 |
+
z = torch.einsum('b c h w -> b h w c', z).contiguous()
|
| 254 |
+
z_flattened = z.view(-1, self.e_dim)
|
| 255 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 256 |
+
|
| 257 |
+
if self.l2_norm:
|
| 258 |
+
z = F.normalize(z, p=2, dim=-1)
|
| 259 |
+
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
|
| 260 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
| 261 |
+
else:
|
| 262 |
+
embedding = self.embedding.weight
|
| 263 |
+
|
| 264 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
| 265 |
+
torch.sum(embedding**2, dim=1) - 2 * \
|
| 266 |
+
torch.einsum('bd,dn->bn', z_flattened, torch.einsum('n d -> d n', embedding))
|
| 267 |
+
|
| 268 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
| 269 |
+
z_q = embedding[min_encoding_indices].view(z.shape)
|
| 270 |
+
perplexity = None
|
| 271 |
+
min_encodings = None
|
| 272 |
+
vq_loss = None
|
| 273 |
+
commit_loss = None
|
| 274 |
+
entropy_loss = None
|
| 275 |
+
codebook_usage = 0
|
| 276 |
+
|
| 277 |
+
if self.show_usage and self.training:
|
| 278 |
+
cur_len = min_encoding_indices.shape[0]
|
| 279 |
+
self.codebook_used[:-cur_len] = self.codebook_used[cur_len:].clone()
|
| 280 |
+
self.codebook_used[-cur_len:] = min_encoding_indices
|
| 281 |
+
codebook_usage = len(torch.unique(self.codebook_used)) / self.n_e
|
| 282 |
+
|
| 283 |
+
# compute loss for embedding
|
| 284 |
+
if self.training:
|
| 285 |
+
vq_loss = torch.mean((z_q - z.detach()) ** 2)
|
| 286 |
+
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2)
|
| 287 |
+
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d)
|
| 288 |
+
|
| 289 |
+
# preserve gradients
|
| 290 |
+
z_q = z + (z_q - z).detach()
|
| 291 |
+
|
| 292 |
+
# reshape back to match original input shape
|
| 293 |
+
z_q = torch.einsum('b h w c -> b c h w', z_q)
|
| 294 |
+
|
| 295 |
+
return z_q, (vq_loss, commit_loss, entropy_loss, codebook_usage), (perplexity, min_encodings, min_encoding_indices)
|
| 296 |
+
|
| 297 |
+
def get_codebook_entry(self, indices, shape=None, channel_first=True):
|
| 298 |
+
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
|
| 299 |
+
if self.l2_norm:
|
| 300 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
| 301 |
+
else:
|
| 302 |
+
embedding = self.embedding.weight
|
| 303 |
+
z_q = embedding[indices] # (b*h*w, c)
|
| 304 |
+
|
| 305 |
+
if shape is not None:
|
| 306 |
+
if channel_first:
|
| 307 |
+
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
|
| 308 |
+
# reshape back to match original input shape
|
| 309 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 310 |
+
else:
|
| 311 |
+
z_q = z_q.view(shape)
|
| 312 |
+
return z_q
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
class ResnetBlock(nn.Module):
|
| 316 |
+
def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type='group'):
|
| 317 |
+
super().__init__()
|
| 318 |
+
self.in_channels = in_channels
|
| 319 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 320 |
+
self.out_channels = out_channels
|
| 321 |
+
self.use_conv_shortcut = conv_shortcut
|
| 322 |
+
|
| 323 |
+
self.norm1 = Normalize(in_channels, norm_type)
|
| 324 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 325 |
+
self.norm2 = Normalize(out_channels, norm_type)
|
| 326 |
+
self.dropout = nn.Dropout(dropout)
|
| 327 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 328 |
+
|
| 329 |
+
if self.in_channels != self.out_channels:
|
| 330 |
+
if self.use_conv_shortcut:
|
| 331 |
+
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 332 |
+
else:
|
| 333 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 334 |
+
|
| 335 |
+
def forward(self, x):
|
| 336 |
+
h = x
|
| 337 |
+
h = self.norm1(h)
|
| 338 |
+
h = nonlinearity(h)
|
| 339 |
+
h = self.conv1(h)
|
| 340 |
+
h = self.norm2(h)
|
| 341 |
+
h = nonlinearity(h)
|
| 342 |
+
h = self.dropout(h)
|
| 343 |
+
h = self.conv2(h)
|
| 344 |
+
|
| 345 |
+
if self.in_channels != self.out_channels:
|
| 346 |
+
if self.use_conv_shortcut:
|
| 347 |
+
x = self.conv_shortcut(x)
|
| 348 |
+
else:
|
| 349 |
+
x = self.nin_shortcut(x)
|
| 350 |
+
return x+h
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
class AttnBlock(nn.Module):
|
| 354 |
+
def __init__(self, in_channels, norm_type='group'):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.norm = Normalize(in_channels, norm_type)
|
| 357 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 358 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 359 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 360 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 361 |
+
|
| 362 |
+
def forward(self, x):
|
| 363 |
+
h_ = x
|
| 364 |
+
h_ = self.norm(h_)
|
| 365 |
+
q = self.q(h_)
|
| 366 |
+
k = self.k(h_)
|
| 367 |
+
v = self.v(h_)
|
| 368 |
+
|
| 369 |
+
# compute attention
|
| 370 |
+
b,c,h,w = q.shape
|
| 371 |
+
q = q.reshape(b,c,h*w)
|
| 372 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 373 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 374 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 375 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 376 |
+
w_ = F.softmax(w_, dim=2)
|
| 377 |
+
|
| 378 |
+
# attend to values
|
| 379 |
+
v = v.reshape(b,c,h*w)
|
| 380 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 381 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 382 |
+
h_ = h_.reshape(b,c,h,w)
|
| 383 |
+
|
| 384 |
+
h_ = self.proj_out(h_)
|
| 385 |
+
|
| 386 |
+
return x+h_
|
| 387 |
+
|
| 388 |
+
def nonlinearity(x):
|
| 389 |
+
# swish
|
| 390 |
+
return x*torch.sigmoid(x)
|
| 391 |
+
|
| 392 |
+
def Normalize(in_channels, norm_type='group'):
|
| 393 |
+
assert norm_type in ['group', 'batch']
|
| 394 |
+
if norm_type == 'group':
|
| 395 |
+
return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 396 |
+
elif norm_type == 'batch':
|
| 397 |
+
return nn.SyncBatchNorm(in_channels)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
class Upsample(nn.Module):
|
| 401 |
+
def __init__(self, in_channels, with_conv):
|
| 402 |
+
super().__init__()
|
| 403 |
+
self.with_conv = with_conv
|
| 404 |
+
if self.with_conv:
|
| 405 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
| 406 |
+
|
| 407 |
+
def forward(self, x):
|
| 408 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 409 |
+
if self.with_conv:
|
| 410 |
+
x = self.conv(x)
|
| 411 |
+
return x
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
class Downsample(nn.Module):
|
| 415 |
+
def __init__(self, in_channels, with_conv):
|
| 416 |
+
super().__init__()
|
| 417 |
+
self.with_conv = with_conv
|
| 418 |
+
if self.with_conv:
|
| 419 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 420 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
| 421 |
+
|
| 422 |
+
def forward(self, x):
|
| 423 |
+
if self.with_conv:
|
| 424 |
+
pad = (0,1,0,1)
|
| 425 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
| 426 |
+
x = self.conv(x)
|
| 427 |
+
else:
|
| 428 |
+
x = F.avg_pool2d(x, kernel_size=2, stride=2)
|
| 429 |
+
return x
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01):
|
| 433 |
+
flat_affinity = affinity.reshape(-1, affinity.shape[-1])
|
| 434 |
+
flat_affinity /= temperature
|
| 435 |
+
probs = F.softmax(flat_affinity, dim=-1)
|
| 436 |
+
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1)
|
| 437 |
+
if loss_type == "softmax":
|
| 438 |
+
target_probs = probs
|
| 439 |
+
else:
|
| 440 |
+
raise ValueError("Entropy loss {} not supported".format(loss_type))
|
| 441 |
+
avg_probs = torch.mean(target_probs, dim=0)
|
| 442 |
+
avg_entropy = - torch.sum(avg_probs * torch.log(avg_probs + 1e-5))
|
| 443 |
+
sample_entropy = - torch.mean(torch.sum(target_probs * log_probs, dim=-1))
|
| 444 |
+
loss = sample_entropy - avg_entropy
|
| 445 |
+
return loss
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
#################################################################################
|
| 449 |
+
# VQ Model Configs #
|
| 450 |
+
#################################################################################
|
| 451 |
+
def VQ_8(**kwargs):
|
| 452 |
+
return VQModel(ModelArgs(encoder_ch_mult=[1, 2, 2, 4], decoder_ch_mult=[1, 2, 2, 4], **kwargs))
|
| 453 |
+
|
| 454 |
+
def VQ_16(**kwargs):
|
| 455 |
+
return VQModel(ModelArgs(encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs))
|
| 456 |
+
|
| 457 |
+
VQ_models = {'VQ-16': VQ_16, 'VQ-8': VQ_8}
|
tok/mm_autoencoder.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from tok.ar_dtok.ar_model import ARModel
|
| 5 |
+
from tok.ar_dtok.vqvae import VQVAE
|
| 6 |
+
from tok.ta_tok import TextAlignedTokenizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class MMAutoEncoder(nn.Module):
|
| 10 |
+
def __init__(self,
|
| 11 |
+
ar_path,
|
| 12 |
+
encoder_path, decoder_path,
|
| 13 |
+
encoder_args={}, decoder_args={}):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.ar_model = ARModel.from_checkpoint(ar_path)
|
| 16 |
+
|
| 17 |
+
self.encoder = TextAlignedTokenizer.from_checkpoint(encoder_path, load_teacher=False, **encoder_args)
|
| 18 |
+
self.decoder = VQVAE.from_checkpoint(decoder_path, **decoder_args)
|
| 19 |
+
|
| 20 |
+
def ar_sample(self, x, args):
|
| 21 |
+
x = self.ar_model.sample(
|
| 22 |
+
x,
|
| 23 |
+
cfg_scale=args.get('cfg_scale', 1.0),
|
| 24 |
+
cfg_interval=args.get('cfg_interval', -1),
|
| 25 |
+
temperature=args.get('temperature', 1.0),
|
| 26 |
+
top_k=args.get('top_k', 0),
|
| 27 |
+
top_p=args.get('top_p', 1.0)
|
| 28 |
+
)
|
| 29 |
+
return x
|
| 30 |
+
|
| 31 |
+
def post_process(self, x):
|
| 32 |
+
x = x.cpu().float().clamp(0., 1.) * 255.
|
| 33 |
+
x = x.permute(0, 2, 3, 1) # [b, h, w, c]
|
| 34 |
+
x = x.to(torch.uint8)
|
| 35 |
+
return x
|
| 36 |
+
|
| 37 |
+
def encode(self, x):
|
| 38 |
+
return self.encoder(x.to(self.encoder.dtype))['encoded']
|
| 39 |
+
|
| 40 |
+
def get_encoder_indices(self, x):
|
| 41 |
+
# img -> encoder -> indices
|
| 42 |
+
return self.encoder(x.to(self.encoder.dtype))['bottleneck_rep']
|
| 43 |
+
|
| 44 |
+
@torch.inference_mode()
|
| 45 |
+
def decode_from_encoder_indices(self, indices, args={}):
|
| 46 |
+
# indices -> encoder feats -> ar -> decoder
|
| 47 |
+
encoder_x = self.encoder.decode_from_bottleneck(indices)
|
| 48 |
+
ar_indices = self.ar_sample(encoder_x, args)
|
| 49 |
+
decoder_x = self.decoder.decode_from_bottleneck(ar_indices)
|
| 50 |
+
x = self.post_process(decoder_x)
|
| 51 |
+
return x
|
| 52 |
+
|
| 53 |
+
def decode_from_vqvae_indices(self, indices):
|
| 54 |
+
decoder_x = self.decoder.decode_from_bottleneck(indices)
|
| 55 |
+
x = self.post_process(decoder_x)
|
| 56 |
+
return x
|
| 57 |
+
|
| 58 |
+
@torch.inference_mode()
|
| 59 |
+
def forward(self, x, args={}):
|
| 60 |
+
encoder_x = self.encoder(x.to(self.encoder.dtype))['encoded']
|
| 61 |
+
ar_indices = self.ar_sample(encoder_x, args)
|
| 62 |
+
decoder_x = self.decoder.decode_from_bottleneck(ar_indices)
|
| 63 |
+
x = self.post_process(decoder_x)
|
| 64 |
+
return x
|
tok/models.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import inspect
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
models = {}
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def register(name):
|
| 10 |
+
def decorator(cls):
|
| 11 |
+
models[name] = cls
|
| 12 |
+
return cls
|
| 13 |
+
return decorator
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def make(model_spec, args=None, load_sd=False) -> torch.nn.Module:
|
| 17 |
+
if args is not None:
|
| 18 |
+
model_args = copy.deepcopy(model_spec['args'])
|
| 19 |
+
model_args.update(args)
|
| 20 |
+
else:
|
| 21 |
+
model_args = model_spec['args']
|
| 22 |
+
model_params = inspect.signature(models[model_spec['name']]).parameters
|
| 23 |
+
if 'kwargs' not in model_params:
|
| 24 |
+
model_args = {k: v for k, v in model_args.items() if k in model_params}
|
| 25 |
+
model = models[model_spec['name']](**model_args)
|
| 26 |
+
if load_sd:
|
| 27 |
+
if ('abs_pe' in model_spec['sd']) and hasattr(model, 'abs_pe') and model_spec['sd']['abs_pe'].shape != model.abs_pe.shape:
|
| 28 |
+
del model_spec['sd']['abs_pe']
|
| 29 |
+
msg = model.load_state_dict(model_spec['sd'], strict=False)
|
| 30 |
+
print(msg)
|
| 31 |
+
return model
|
tok/ta_tok.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
from torchvision.transforms import Resize
|
| 6 |
+
from transformers import AutoConfig, AutoModel, Siglip2VisionConfig, Siglip2VisionModel
|
| 7 |
+
|
| 8 |
+
from . import models
|
| 9 |
+
from .utils import ScalingLayer
|
| 10 |
+
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
|
| 13 |
+
ckpt_path = hf_hub_download(
|
| 14 |
+
repo_id="csuhan/TA-Tok",
|
| 15 |
+
filename="ta_tok.pth",
|
| 16 |
+
repo_type="model"
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class TextAlignedTokenizer(nn.Module):
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
bottleneck,
|
| 24 |
+
bottleneck_token_num=256,
|
| 25 |
+
input_size=384,
|
| 26 |
+
teacher='google/siglip2-so400m-patch14-384',
|
| 27 |
+
input_type='quant', # choose from ['quant', 'rec', 'indices']
|
| 28 |
+
pool_scale=1, # choose from [1, 2, 3]
|
| 29 |
+
decoder_depth=3,
|
| 30 |
+
select_layer_id=-2,
|
| 31 |
+
*args,
|
| 32 |
+
**kwargs
|
| 33 |
+
):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.input_size = input_size
|
| 36 |
+
self.bottleneck_token_num = bottleneck_token_num
|
| 37 |
+
self.teacher = teacher
|
| 38 |
+
self.input_type = input_type
|
| 39 |
+
self.pool_scale = pool_scale
|
| 40 |
+
self.decoder_depth = decoder_depth
|
| 41 |
+
self.select_layer_id = select_layer_id
|
| 42 |
+
|
| 43 |
+
self.bottleneck_dim = bottleneck['args']['bottleneck_dim']
|
| 44 |
+
|
| 45 |
+
self.encoder_config = AutoConfig.from_pretrained(teacher)
|
| 46 |
+
self.encoder = AutoModel.from_config(self.encoder_config).vision_model
|
| 47 |
+
|
| 48 |
+
self.encoder_hidden_dim = self.encoder.config.hidden_size
|
| 49 |
+
|
| 50 |
+
self.decoder_config = Siglip2VisionConfig()
|
| 51 |
+
self.decoder_config.update({
|
| 52 |
+
'patch_size': 1,
|
| 53 |
+
'num_hidden_layers': self.decoder_depth,
|
| 54 |
+
'num_channels': self.bottleneck_dim,
|
| 55 |
+
'hidden_size': self.encoder_hidden_dim,
|
| 56 |
+
})
|
| 57 |
+
self.decoder = Siglip2VisionModel(self.decoder_config)
|
| 58 |
+
|
| 59 |
+
self.encode_task_layer = nn.Sequential(
|
| 60 |
+
nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim),
|
| 61 |
+
nn.Tanh())
|
| 62 |
+
self.decode_task_layer = nn.Sequential(
|
| 63 |
+
nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim),
|
| 64 |
+
nn.Tanh(),
|
| 65 |
+
nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim))
|
| 66 |
+
|
| 67 |
+
bottleneck_args = {
|
| 68 |
+
'token_nums': self.bottleneck_token_num,
|
| 69 |
+
'input_dim': self.encoder_hidden_dim,
|
| 70 |
+
'output_dim': self.bottleneck_dim}
|
| 71 |
+
self.bottleneck = models.make(bottleneck, args=bottleneck_args)
|
| 72 |
+
|
| 73 |
+
self.scale_layer = ScalingLayer(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 74 |
+
self.image_resize = Resize((self.input_size, self.input_size))
|
| 75 |
+
|
| 76 |
+
def set_vq_eval_deterministic(self, deterministic=True):
|
| 77 |
+
self.bottleneck.regularizer.set_eval_deterministic(deterministic)
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def device(self):
|
| 81 |
+
return next(self.parameters()).device
|
| 82 |
+
|
| 83 |
+
@property
|
| 84 |
+
def dtype(self):
|
| 85 |
+
return next(self.parameters()).dtype
|
| 86 |
+
|
| 87 |
+
@classmethod
|
| 88 |
+
def from_checkpoint(cls, ckpt, load_teacher=True, **kwargs):
|
| 89 |
+
ckpt = torch.load(ckpt_path, map_location='cpu')
|
| 90 |
+
ckpt_kwargs = ckpt["model"]["args"]
|
| 91 |
+
model = cls(**kwargs, **ckpt_kwargs)
|
| 92 |
+
sd = ckpt["model"]["sd"]
|
| 93 |
+
if not load_teacher:
|
| 94 |
+
sd = {k: v for k, v in sd.items() if not k.startswith('teacher')}
|
| 95 |
+
model.load_state_dict(sd, strict=True)
|
| 96 |
+
return model
|
| 97 |
+
|
| 98 |
+
def encode(self, x, **kwargs):
|
| 99 |
+
if x.ndim == 5:
|
| 100 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
| 101 |
+
x = self.scale_layer(x)
|
| 102 |
+
if tuple(x.shape[-2:]) != (self.input_size, self.input_size):
|
| 103 |
+
x = self.image_resize(x)
|
| 104 |
+
vq_feats = self.encoder(x, output_hidden_states=True).hidden_states[self.select_layer_id]
|
| 105 |
+
|
| 106 |
+
pool_scale = self.pool_scale
|
| 107 |
+
pool_scale = kwargs.get("pool_scale", pool_scale)
|
| 108 |
+
if pool_scale != 1:
|
| 109 |
+
vq_feats = self.avg_pool(vq_feats, pool_scale)
|
| 110 |
+
vq_feats = self.encode_task_layer(vq_feats.to(x))
|
| 111 |
+
|
| 112 |
+
bottleneck_out = self.bottleneck(vq_feats)
|
| 113 |
+
z = bottleneck_out.pop('output')
|
| 114 |
+
|
| 115 |
+
return {'encoded': z, 'pool_scale': pool_scale, 'vq_feats': vq_feats, **bottleneck_out}
|
| 116 |
+
|
| 117 |
+
def avg_pool(self, z, pool_scale=1):
|
| 118 |
+
if z.ndim == 3:
|
| 119 |
+
b, n, c = z.shape
|
| 120 |
+
p = int(n ** 0.5)
|
| 121 |
+
z = rearrange(z, 'b (p1 p2) c -> b c p1 p2', p1=p, p2=p)
|
| 122 |
+
else:
|
| 123 |
+
b, c, p, _ = z.shape
|
| 124 |
+
p_s = int(p // pool_scale)
|
| 125 |
+
z = F.avg_pool2d(
|
| 126 |
+
z,
|
| 127 |
+
kernel_size=(pool_scale, pool_scale),
|
| 128 |
+
stride=(pool_scale, pool_scale)
|
| 129 |
+
).contiguous()
|
| 130 |
+
z = rearrange(z, 'b c p1 p2 -> b (p1 p2) c')
|
| 131 |
+
return z
|
| 132 |
+
|
| 133 |
+
def decode(self, z):
|
| 134 |
+
if z.ndim == 4:
|
| 135 |
+
z = rearrange(z, 'b c p1 p2 -> b (p1 p2) c')
|
| 136 |
+
attention_mask = torch.ones(z.shape[:2], dtype=torch.int, device=z.device)
|
| 137 |
+
p = int(z.shape[1]**0.5)
|
| 138 |
+
spatial_shape = torch.tensor([[p, p]]*z.shape[0], device=self.device)
|
| 139 |
+
z = self.decoder(z, attention_mask, spatial_shape, output_hidden_states=True).last_hidden_state
|
| 140 |
+
z = self.decode_task_layer(z)
|
| 141 |
+
return z
|
| 142 |
+
|
| 143 |
+
def decode_from_bottleneck(self, bottleneck_rep):
|
| 144 |
+
z = self.bottleneck.decode(bottleneck_rep) # (b, n, c)
|
| 145 |
+
p = int(z.shape[1]**0.5)
|
| 146 |
+
z = rearrange(z, 'b (p1 p2) c -> b c p1 p2', p1=p, p2=p)
|
| 147 |
+
return self.decode(z)
|
| 148 |
+
|
| 149 |
+
def forward(self, data, **kwargs):
|
| 150 |
+
# data: video in shape (b, c, t, h, w)
|
| 151 |
+
encode_output = self.encode(data, **kwargs)
|
| 152 |
+
vq_feats = encode_output['encoded']
|
| 153 |
+
p = int(vq_feats.shape[1] ** 0.5)
|
| 154 |
+
vq_feats = rearrange(vq_feats, 'b (h w) c -> b c h w', h=p, w=p)
|
| 155 |
+
pred_feats = self.decode(vq_feats)
|
| 156 |
+
|
| 157 |
+
if self.input_type == 'quant':
|
| 158 |
+
z = encode_output["regularized_z"] # [b, n, c]
|
| 159 |
+
elif self.input_type == 'indices':
|
| 160 |
+
z = encode_output["bottleneck_rep"] # [b, n]
|
| 161 |
+
elif self.input_type == 'rec':
|
| 162 |
+
z = pred_feats # [b, n, c]
|
| 163 |
+
encode_output['encoded'] = z
|
| 164 |
+
return encode_output
|
tok/utils.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class ScalingLayer(nn.Module):
|
| 6 |
+
def __init__(self, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.register_buffer('shift', torch.Tensor(mean)[None, :, None, None])
|
| 9 |
+
self.register_buffer('scale', torch.Tensor(std)[None, :, None, None])
|
| 10 |
+
|
| 11 |
+
def forward(self, inp):
|
| 12 |
+
return (inp - self.shift) / self.scale
|
| 13 |
+
|
| 14 |
+
def inv(self, inp):
|
| 15 |
+
return inp * self.scale + self.shift
|