update examles
Browse files
examples/default/input_params/output_20250426091716_0_input_params.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"prompt": "anime, cute female vocals, kawaii pop, j-pop, childish, piano, guitar, synthesizer, fast, happy, cheerful, lighthearted",
|
| 3 |
+
"lyrics": "[Chorus]\nใญใใ้กใ่ตคใใ๏ผ\nใฉใใใใฎ๏ผ ็ฑใใใใฎ๏ผ\nใใใจใๆใฃใฆใใฎ๏ผ\nใญใใ่จใฃใฆใ๏ผ\n\nใฉใใใฆใใใช็ฎใง่ฆใใฎ๏ผ\n็งใๆชใใใจใใ๏ผ\nไฝใ้้ใใใฎ๏ผ\nใ้กใใใใใฆโฆ ๆใใใโฆ\nใ ใใใใใใฆใโฆ\n\n[Bridge]\n็ฎใ้ใใฆใใใใฃใจ่ใๅใใฆใ\nไฝใ่ฆใชใใฃใใใชใใใใใ\nๆใใชใใงโฆ ่จฑใใฆใโฆ\n\n[Chorus]\nใญใใ้กใ่ตคใใ๏ผ\nใฉใใใใฎ๏ผ ็ฑใใใใฎ๏ผ\nใใใจใๆใฃใฆใใฎ๏ผ\nใญใใ่จใฃใฆใ๏ผ\n\nใฉใใใฆใใใช็ฎใง่ฆใใฎ๏ผ\n็งใๆชใใใจใใ๏ผ\nไฝใ้้ใใใฎ๏ผ\nใ้กใใใใใฆโฆ ๆใใใโฆ\nใ ใใใใใใฆใโฆ\n\n[Bridge 2]\nๅพ
ใฃใฆใใใ็งใๆชใใชใใ\nใใใใชใใใฃใฆ่จใใใใ\nใขใคในใฏใชใผใ ใใใใใใ\nใใๆใใชใใง๏ผ\n\nOooohโฆ ่จใฃใฆใ๏ผ",
|
| 4 |
+
"audio_duration": 160,
|
| 5 |
+
"infer_step": 60,
|
| 6 |
+
"guidance_scale": 15,
|
| 7 |
+
"scheduler_type": "euler",
|
| 8 |
+
"cfg_type": "apg",
|
| 9 |
+
"omega_scale": 10,
|
| 10 |
+
"guidance_interval": 0.5,
|
| 11 |
+
"guidance_interval_decay": 0,
|
| 12 |
+
"min_guidance_scale": 3,
|
| 13 |
+
"use_erg_tag": true,
|
| 14 |
+
"use_erg_lyric": true,
|
| 15 |
+
"use_erg_diffusion": true,
|
| 16 |
+
"oss_steps": [],
|
| 17 |
+
"timecosts": {
|
| 18 |
+
"preprocess": 0.0282442569732666,
|
| 19 |
+
"diffusion": 12.104875326156616,
|
| 20 |
+
"latent2audio": 1.587641954421997
|
| 21 |
+
},
|
| 22 |
+
"actual_seeds": [
|
| 23 |
+
4028738662
|
| 24 |
+
]
|
| 25 |
+
}
|
examples/zh_rap_lora/input_params/output_20250512120348_0_input_params.json
CHANGED
|
@@ -22,7 +22,7 @@
|
|
| 22 |
"latent2audio": 0.5694489479064941
|
| 23 |
},
|
| 24 |
"actual_seeds": [
|
| 25 |
-
|
| 26 |
],
|
| 27 |
"retake_seeds": [
|
| 28 |
1603201617
|
|
|
|
| 22 |
"latent2audio": 0.5694489479064941
|
| 23 |
},
|
| 24 |
"actual_seeds": [
|
| 25 |
+
226581098
|
| 26 |
],
|
| 27 |
"retake_seeds": [
|
| 28 |
1603201617
|
examples/zh_rap_lora/input_params/output_20250512160830_0_input_params.json
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"lora_name_or_path": "/root/sag_train/data/ace_step_v1_chinese_rap_lora_80k",
|
| 3 |
-
"task": "text2music",
|
| 4 |
-
"prompt": "articulate, spoken word, young adult, rap music, male, clear, energetic, warm, relaxed, breathy, night club",
|
| 5 |
-
"lyrics": "[verse]\n่ฟ ่ฟ ่ฐ ๅ ๅจ ๆดพ ๅฏน ๅ ๅค\nๆ ็ ่ ่ข\nๅ ่ขซ ้ฉด ่ธข ่ฟ\nไธ ๅฏน ๅฒ\n่ ๅคด ๆ ็ป ไธ ไผ ่ฏด\nไฝ ๆฅ ๆ ๆ ๆ ๅฐฑ ่ทช\nๅผ ๅฑ ็ด ๆฅ ๅดฉ ๆบ\n\n[chorus]\nๅฐฑ ๅช ไนฑ ๅช ๅฟต ๅช ้ ๅช\nๅด ๅช ็ข ๅช ๆ ๅช ็ ๅช\n่ ๅช ่ข ๅช ๅ ๅช ๆต ๅช ็ณ ๅช\n่ท ๅช ็ ๅช ่ ๅช ๅฅ ๅช\nๆ ๅช ๆญ ๅช ่ฏ ๅช ๅ
จ ๅช ๅฟ ๅช\nไธ ๅช ๅผ ๅช ๅด ๅช ๅฐฑ ๅช ๅบ ๅช\nๅช ๅช ๅฉ ๅช ไธ ๅช ๅฐด ๅช ๅฐฌ ๅช ๅ ๅช ๅฟ\n่๏ผ\n\n[verse]\n้ ้ ้ ้ ไบ\nไธ ๅฃ ๆฐ ๅ
จ ๅฟต ้\n้ ้ ้ ้ ไบ\n่ ๅคด ๆ ็ป ็ฉ ้
\n็ฉ ็ฉ ็ฉ ็ฉ ้
\n็ฉ ้
็ฉ ้
\nๆ ๅญ ๅ
จ ้จ ไนฑ ๅฅ\n่ง ไผ ็ฌ ๅฐ ๅ ่ก\n\n[verse]\nไฝ ็ ๆญ ่ฏ ๆ ็ ๅฉ ๆขฆ\nๅฑ ๅฎ ็ด ๆฅ ็คพ ๆญป\n่ฐ ่ท ๅฐ ๅค ๅคช ็ฉบ\n่ง ไผ ่กจ ๆ
่ฃ ๅผ\nไฝ ็ฌ ๆ ่\nๆ ็ฌ ไฝ ไธ ๆ\n่ฟ ๅซ ่บ ๆฏ ่กจ ๆผ\nไธ ๆ ไฝ ๆฅ๏ผ\n\n[verse]\n่ฟ ่ฟ ่ฐ ๅ ๅจ ๆดพ ๅฏน ไธข ไบบ\nๆ ็ ไธ ็\nๅทฒ ็ป ๅฝป ๅบ ๅดฉ ๆบ\nๆฒก ๆ ๅฎ ็พ\nๅช ๆ ็ฟป ่ฝฆ ็ฐ ๅบ\nไปฅ ๅ ่ง ไผ ็ ๅฒ ่ฎฝ\n\n[chorus]\nๅฐฑ ๅช ไนฑ ๅช ๅฟต ๅช ้ ๅช\nๅด ๅช ็ข ๅช ๆ ๅช ็ ๅช\n่ ๅช ่ข ๅช ๅ ๅช ๆต ๅช ็ณ ๅช\n่ท ๅช ็ ๅช ่ ๅช ๅฅ ๅช\nๆ ๅช ๆญ ๅช ่ฏ ๅช ๅ
จ ๅช ๅฟ ๅช\nไธ ๅช ๅผ ๅช ๅด ๅช ๅฐฑ ๅช ๅบ ๅช\nๅช ๅช ๅฉ ๅช ไธ ๅช ๅฐด ๅช ๅฐฌ ๅช ๅ ๅช ๅฟ\n่๏ผ\n\n[verse]\n้ ้ ้ ้ ไบ\nไธ ๅฃ ๆฐ ๅ
จ ๅฟต ้\n้ ้ ้ ้ ไบ\n่ ๅคด ๆ ็ป ็ฉ ้
\n็ฉ ็ฉ ็ฉ ็ฉ ้
\n็ฉ ้
็ฉ ้
\nๆ ๅญ ๅ
จ ้จ ไนฑ ๅฅ\n่ง ไผ ็ฌ ๅฐ ๅ ่ก\n\n[verse]\nไฝ ็ ๆญ ่ฏ ๆ ็ ๅฉ ๆขฆ\nๅฑ ๅฎ ็ด ๆฅ ็คพ ๆญป\n่ฐ ่ท ๅฐ ๅค ๅคช ็ฉบ\n่ง ไผ ่กจ ๆ
่ฃ ๅผ\nไฝ ็ฌ ๆ ่\nๆ ็ฌ ไฝ ไธ ๆ\n่ฟ ๅซ ่บ ๆฏ ่กจ ๆผ\nไธ ๆ ไฝ ๆฅ๏ผ",
|
| 6 |
-
"audio_duration": 169.12,
|
| 7 |
-
"infer_step": 60,
|
| 8 |
-
"guidance_scale": 15,
|
| 9 |
-
"scheduler_type": "euler",
|
| 10 |
-
"cfg_type": "apg",
|
| 11 |
-
"omega_scale": 10,
|
| 12 |
-
"guidance_interval": 0.5,
|
| 13 |
-
"guidance_interval_decay": 0,
|
| 14 |
-
"min_guidance_scale": 3,
|
| 15 |
-
"use_erg_tag": true,
|
| 16 |
-
"use_erg_lyric": false,
|
| 17 |
-
"use_erg_diffusion": true,
|
| 18 |
-
"oss_steps": [],
|
| 19 |
-
"timecosts": {
|
| 20 |
-
"preprocess": 0.041605472564697266,
|
| 21 |
-
"diffusion": 14.009192705154419,
|
| 22 |
-
"latent2audio": 1.55946946144104
|
| 23 |
-
},
|
| 24 |
-
"actual_seeds": [
|
| 25 |
-
547563805
|
| 26 |
-
],
|
| 27 |
-
"retake_seeds": [
|
| 28 |
-
2702917060
|
| 29 |
-
],
|
| 30 |
-
"retake_variance": 0.5,
|
| 31 |
-
"guidance_scale_text": 0,
|
| 32 |
-
"guidance_scale_lyric": 0,
|
| 33 |
-
"repaint_start": 0,
|
| 34 |
-
"repaint_end": 0,
|
| 35 |
-
"edit_n_min": 0.0,
|
| 36 |
-
"edit_n_max": 1.0,
|
| 37 |
-
"edit_n_avg": 1,
|
| 38 |
-
"src_audio_path": null,
|
| 39 |
-
"edit_target_prompt": null,
|
| 40 |
-
"edit_target_lyrics": null,
|
| 41 |
-
"audio2audio_enable": false,
|
| 42 |
-
"ref_audio_strength": 0.5,
|
| 43 |
-
"ref_audio_input": null,
|
| 44 |
-
"audio_path": "./outputs/output_20250512160830_0.wav"
|
| 45 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline_ace_step.py
CHANGED
|
@@ -12,9 +12,15 @@ import math
|
|
| 12 |
from huggingface_hub import hf_hub_download, snapshot_download
|
| 13 |
|
| 14 |
# from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 15 |
-
from schedulers.scheduling_flow_match_euler_discrete import
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
from diffusers.utils.torch_utils import randn_tensor
|
| 19 |
from transformers import UMT5EncoderModel, AutoTokenizer
|
| 20 |
|
|
@@ -22,23 +28,42 @@ from language_segmentation import LangSegment
|
|
| 22 |
from music_dcae.music_dcae_pipeline import MusicDCAE
|
| 23 |
from models.ace_step_transformer import ACEStepTransformer2DModel
|
| 24 |
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
|
| 25 |
-
from apg_guidance import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
import torchaudio
|
| 27 |
import torio
|
| 28 |
|
| 29 |
|
| 30 |
torch.backends.cudnn.benchmark = False
|
| 31 |
-
torch.set_float32_matmul_precision(
|
| 32 |
torch.backends.cudnn.deterministic = True
|
| 33 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 34 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 35 |
|
| 36 |
|
| 37 |
SUPPORT_LANGUAGES = {
|
| 38 |
-
"en": 259,
|
| 39 |
-
"
|
| 40 |
-
"
|
| 41 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
}
|
| 43 |
|
| 44 |
structure_pattern = re.compile(r"\[.*?\]")
|
|
@@ -56,7 +81,16 @@ REPO_ID = "ACE-Step/ACE-Step-v1-3.5B"
|
|
| 56 |
# class ACEStepPipeline(DiffusionPipeline):
|
| 57 |
class ACEStepPipeline:
|
| 58 |
|
| 59 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
if not checkpoint_dir:
|
| 61 |
if persistent_storage_path is None:
|
| 62 |
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
|
|
@@ -64,7 +98,11 @@ class ACEStepPipeline:
|
|
| 64 |
checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints")
|
| 65 |
ensure_directory_exists(checkpoint_dir)
|
| 66 |
self.checkpoint_dir = checkpoint_dir
|
| 67 |
-
device =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
if device.type == "cpu" and torch.backends.mps.is_available():
|
| 69 |
device = torch.device("mps")
|
| 70 |
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
|
|
@@ -74,17 +112,25 @@ class ACEStepPipeline:
|
|
| 74 |
self.loaded = False
|
| 75 |
self.torch_compile = torch_compile
|
| 76 |
self.lora_path = "none"
|
| 77 |
-
|
| 78 |
def load_lora(self, lora_name_or_path):
|
| 79 |
if lora_name_or_path != self.lora_path and lora_name_or_path != "none":
|
| 80 |
if not os.path.exists(lora_name_or_path):
|
| 81 |
-
lora_download_path = snapshot_download(
|
|
|
|
|
|
|
| 82 |
else:
|
| 83 |
lora_download_path = lora_name_or_path
|
| 84 |
if self.lora_path != "none":
|
| 85 |
self.ace_step_transformer.unload_lora()
|
| 86 |
-
self.ace_step_transformer.load_lora_adapter(
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
self.lora_path = lora_name_or_path
|
| 89 |
elif self.lora_path != "none" and lora_name_or_path == "none":
|
| 90 |
logger.info("No lora weights to load.")
|
|
@@ -99,55 +145,124 @@ class ACEStepPipeline:
|
|
| 99 |
text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base")
|
| 100 |
|
| 101 |
files_exist = (
|
| 102 |
-
os.path.exists(os.path.join(dcae_model_path, "config.json"))
|
| 103 |
-
os.path.exists(
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
os.path.exists(os.path.join(
|
| 107 |
-
os.path.exists(
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
os.path.exists(os.path.join(
|
| 111 |
-
os.path.exists(
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
if not files_exist:
|
| 116 |
-
logger.info(
|
|
|
|
|
|
|
| 117 |
|
| 118 |
# download music dcae model
|
| 119 |
os.makedirs(dcae_model_path, exist_ok=True)
|
| 120 |
-
hf_hub_download(
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
# download vocoder model
|
| 126 |
os.makedirs(vocoder_model_path, exist_ok=True)
|
| 127 |
-
hf_hub_download(
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
# download ace_step transformer model
|
| 133 |
os.makedirs(ace_step_model_path, exist_ok=True)
|
| 134 |
-
hf_hub_download(
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
# download text encoder model
|
| 140 |
os.makedirs(text_encoder_model_path, exist_ok=True)
|
| 141 |
-
hf_hub_download(
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
logger.info("Models downloaded")
|
| 153 |
|
|
@@ -156,29 +271,131 @@ class ACEStepPipeline:
|
|
| 156 |
ace_step_checkpoint_path = ace_step_model_path
|
| 157 |
text_encoder_checkpoint_path = text_encoder_model_path
|
| 158 |
|
| 159 |
-
self.music_dcae = MusicDCAE(
|
|
|
|
|
|
|
|
|
|
| 160 |
self.music_dcae.to(device).eval().to(self.dtype)
|
| 161 |
|
| 162 |
-
self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(
|
|
|
|
|
|
|
| 163 |
self.ace_step_transformer.to(device).eval().to(self.dtype)
|
| 164 |
|
| 165 |
lang_segment = LangSegment()
|
| 166 |
|
| 167 |
-
lang_segment.setfilters(
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
self.lang_segment = lang_segment
|
| 176 |
self.lyric_tokenizer = VoiceBpeTokenizer()
|
| 177 |
-
text_encoder_model = UMT5EncoderModel.from_pretrained(
|
|
|
|
|
|
|
| 178 |
text_encoder_model = text_encoder_model.to(device).to(self.dtype)
|
| 179 |
text_encoder_model.requires_grad_(False)
|
| 180 |
self.text_encoder_model = text_encoder_model
|
| 181 |
-
self.text_tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
| 182 |
self.loaded = True
|
| 183 |
|
| 184 |
# compile
|
|
@@ -188,7 +405,13 @@ class ACEStepPipeline:
|
|
| 188 |
self.text_encoder_model = torch.compile(self.text_encoder_model)
|
| 189 |
|
| 190 |
def get_text_embeddings(self, texts, device, text_max_length=256):
|
| 191 |
-
inputs = self.text_tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 193 |
if self.text_encoder_model.device != device:
|
| 194 |
self.text_encoder_model.to(device)
|
|
@@ -197,62 +420,87 @@ class ACEStepPipeline:
|
|
| 197 |
last_hidden_states = outputs.last_hidden_state
|
| 198 |
attention_mask = inputs["attention_mask"]
|
| 199 |
return last_hidden_states, attention_mask
|
| 200 |
-
|
| 201 |
-
def get_text_embeddings_null(
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 204 |
if self.text_encoder_model.device != device:
|
| 205 |
self.text_encoder_model.to(device)
|
| 206 |
-
|
| 207 |
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
|
| 208 |
handlers = []
|
| 209 |
-
|
| 210 |
def hook(module, input, output):
|
| 211 |
output[:] *= tau
|
| 212 |
return output
|
| 213 |
-
|
| 214 |
for i in range(l_min, l_max):
|
| 215 |
-
handler =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
handlers.append(handler)
|
| 217 |
-
|
| 218 |
with torch.no_grad():
|
| 219 |
outputs = self.text_encoder_model(**inputs)
|
| 220 |
last_hidden_states = outputs.last_hidden_state
|
| 221 |
-
|
| 222 |
for hook in handlers:
|
| 223 |
hook.remove()
|
| 224 |
-
|
| 225 |
return last_hidden_states
|
| 226 |
-
|
| 227 |
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
|
| 228 |
return last_hidden_states
|
| 229 |
|
| 230 |
def set_seeds(self, batch_size, manual_seeds=None):
|
| 231 |
-
|
| 232 |
if manual_seeds is not None:
|
| 233 |
if isinstance(manual_seeds, str):
|
| 234 |
if "," in manual_seeds:
|
| 235 |
-
|
| 236 |
elif manual_seeds.isdigit():
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
actual_seeds = []
|
| 241 |
for i in range(batch_size):
|
| 242 |
-
|
| 243 |
-
if
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
return random_generators, actual_seeds
|
| 252 |
|
| 253 |
def get_lang(self, text):
|
| 254 |
language = "en"
|
| 255 |
-
try:
|
| 256 |
_ = self.lang_segment.getTexts(text)
|
| 257 |
langCounts = self.lang_segment.getCounts()
|
| 258 |
language = langCounts[0][0]
|
|
@@ -286,7 +534,9 @@ class ACEStepPipeline:
|
|
| 286 |
else:
|
| 287 |
token_idx = self.lyric_tokenizer.encode(line, lang)
|
| 288 |
if debug:
|
| 289 |
-
toks = self.lyric_tokenizer.batch_decode(
|
|
|
|
|
|
|
| 290 |
logger.info(f"debbug {line} --> {lang} --> {toks}")
|
| 291 |
lyric_token_idx = lyric_token_idx + token_idx + [2]
|
| 292 |
except Exception as e:
|
|
@@ -315,11 +565,13 @@ class ACEStepPipeline:
|
|
| 315 |
attention_mask=None,
|
| 316 |
momentum_buffer=None,
|
| 317 |
momentum_buffer_tar=None,
|
| 318 |
-
return_src_pred=True
|
| 319 |
):
|
| 320 |
noise_pred_src = None
|
| 321 |
if return_src_pred:
|
| 322 |
-
src_latent_model_input =
|
|
|
|
|
|
|
| 323 |
timestep = t.expand(src_latent_model_input.shape[0])
|
| 324 |
# source
|
| 325 |
noise_pred_src = self.ace_step_transformer(
|
|
@@ -334,7 +586,9 @@ class ACEStepPipeline:
|
|
| 334 |
).sample
|
| 335 |
|
| 336 |
if do_classifier_free_guidance:
|
| 337 |
-
noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(
|
|
|
|
|
|
|
| 338 |
if cfg_type == "apg":
|
| 339 |
noise_pred_src = apg_forward(
|
| 340 |
pred_cond=noise_pred_with_cond_src,
|
|
@@ -349,7 +603,9 @@ class ACEStepPipeline:
|
|
| 349 |
cfg_strength=guidance_scale,
|
| 350 |
)
|
| 351 |
|
| 352 |
-
tar_latent_model_input =
|
|
|
|
|
|
|
| 353 |
timestep = t.expand(tar_latent_model_input.shape[0])
|
| 354 |
# target
|
| 355 |
noise_pred_tar = self.ace_step_transformer(
|
|
@@ -419,26 +675,52 @@ class ACEStepPipeline:
|
|
| 419 |
T_steps = infer_steps
|
| 420 |
frame_length = src_latents.shape[-1]
|
| 421 |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
|
| 422 |
-
|
| 423 |
-
timesteps, T_steps = retrieve_timesteps(
|
|
|
|
|
|
|
| 424 |
|
| 425 |
if do_classifier_free_guidance:
|
| 426 |
attention_mask = torch.cat([attention_mask] * 2, dim=0)
|
| 427 |
-
|
| 428 |
-
encoder_text_hidden_states = torch.cat(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0)
|
| 430 |
|
| 431 |
-
target_encoder_text_hidden_states = torch.cat(
|
| 432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
-
speaker_embds = torch.cat(
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
-
lyric_token_ids = torch.cat(
|
|
|
|
|
|
|
| 438 |
lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0)
|
| 439 |
|
| 440 |
-
target_lyric_token_ids = torch.cat(
|
| 441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
momentum_buffer = MomentumBuffer()
|
| 444 |
momentum_buffer_tar = MomentumBuffer()
|
|
@@ -455,10 +737,10 @@ class ACEStepPipeline:
|
|
| 455 |
if i < n_min:
|
| 456 |
continue
|
| 457 |
|
| 458 |
-
t_i = t/1000
|
| 459 |
|
| 460 |
-
if i+1 < len(timesteps):
|
| 461 |
-
t_im1 = (timesteps[i+1])/1000
|
| 462 |
else:
|
| 463 |
t_im1 = torch.zeros_like(t_i).to(t_i.device)
|
| 464 |
|
|
@@ -466,7 +748,12 @@ class ACEStepPipeline:
|
|
| 466 |
# Calculate the average of the V predictions
|
| 467 |
V_delta_avg = torch.zeros_like(x_src)
|
| 468 |
for k in range(n_avg):
|
| 469 |
-
fwd_noise = randn_tensor(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise
|
| 472 |
|
|
@@ -490,22 +777,29 @@ class ACEStepPipeline:
|
|
| 490 |
guidance_scale=guidance_scale,
|
| 491 |
target_guidance_scale=target_guidance_scale,
|
| 492 |
attention_mask=attention_mask,
|
| 493 |
-
momentum_buffer=momentum_buffer
|
| 494 |
)
|
| 495 |
-
V_delta_avg += (1 / n_avg) * (
|
|
|
|
|
|
|
| 496 |
|
| 497 |
# propagate direct ODE
|
| 498 |
zt_edit = zt_edit.to(torch.float32)
|
| 499 |
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
|
| 500 |
zt_edit = zt_edit.to(V_delta_avg.dtype)
|
| 501 |
-
else:
|
| 502 |
if i == n_max:
|
| 503 |
-
fwd_noise = randn_tensor(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
scheduler._init_step_index(t)
|
| 505 |
sigma = scheduler.sigmas[scheduler.step_index]
|
| 506 |
xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src
|
| 507 |
xt_tar = zt_edit + xt_src - x_src
|
| 508 |
-
|
| 509 |
_, Vt_tar = self.calc_v(
|
| 510 |
zt_src=None,
|
| 511 |
zt_tar=xt_tar,
|
|
@@ -527,13 +821,13 @@ class ACEStepPipeline:
|
|
| 527 |
momentum_buffer_tar=momentum_buffer_tar,
|
| 528 |
return_src_pred=False,
|
| 529 |
)
|
| 530 |
-
|
| 531 |
dtype = Vt_tar.dtype
|
| 532 |
xt_tar = xt_tar.to(torch.float32)
|
| 533 |
prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar
|
| 534 |
-
prev_sample = prev_sample.to(dtype)
|
| 535 |
xt_tar = prev_sample
|
| 536 |
-
|
| 537 |
target_latents = zt_edit if xt_tar is None else xt_tar
|
| 538 |
return target_latents
|
| 539 |
|
|
@@ -551,7 +845,12 @@ class ACEStepPipeline:
|
|
| 551 |
timesteps = scheduler.timesteps.unsqueeze(1).to(gt_latents.dtype)
|
| 552 |
indices = indices.to(timesteps.device).to(gt_latents.dtype).unsqueeze(1)
|
| 553 |
nearest_idx = torch.argmin(torch.cdist(indices, timesteps), dim=1)
|
| 554 |
-
sigma =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
while len(sigma.shape) < gt_latents.ndim:
|
| 556 |
sigma = sigma.unsqueeze(-1)
|
| 557 |
noisy_image = sigma * noise + (1.0 - sigma) * gt_latents
|
|
@@ -595,15 +894,30 @@ class ACEStepPipeline:
|
|
| 595 |
ref_latents=None,
|
| 596 |
):
|
| 597 |
|
| 598 |
-
logger.info(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
do_classifier_free_guidance = True
|
| 600 |
if guidance_scale == 0.0 or guidance_scale == 1.0:
|
| 601 |
do_classifier_free_guidance = False
|
| 602 |
-
|
| 603 |
do_double_condition_guidance = False
|
| 604 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
do_double_condition_guidance = True
|
| 606 |
-
logger.info(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
|
| 608 |
device = encoder_text_hidden_states.device
|
| 609 |
dtype = encoder_text_hidden_states.dtype
|
|
@@ -619,7 +933,7 @@ class ACEStepPipeline:
|
|
| 619 |
num_train_timesteps=1000,
|
| 620 |
shift=3.0,
|
| 621 |
)
|
| 622 |
-
|
| 623 |
frame_length = int(duration * 44100 / 512 / 8)
|
| 624 |
if src_latents is not None:
|
| 625 |
frame_length = src_latents.shape[-1]
|
|
@@ -630,31 +944,60 @@ class ACEStepPipeline:
|
|
| 630 |
if len(oss_steps) > 0:
|
| 631 |
infer_steps = max(oss_steps)
|
| 632 |
scheduler.set_timesteps
|
| 633 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device)
|
| 635 |
for idx in range(len(oss_steps)):
|
| 636 |
-
new_timesteps[idx] = timesteps[oss_steps[idx]-1]
|
| 637 |
num_inference_steps = len(oss_steps)
|
| 638 |
sigmas = (new_timesteps / 1000).float().cpu().numpy()
|
| 639 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
| 640 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
else:
|
| 642 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
is_repaint = False
|
| 647 |
-
is_extend
|
| 648 |
if add_retake_noise:
|
| 649 |
n_min = int(infer_steps * (1 - retake_variance))
|
| 650 |
-
retake_variance =
|
| 651 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
repaint_start_frame = int(repaint_start * 44100 / 512 / 8)
|
| 653 |
repaint_end_frame = int(repaint_end * 44100 / 512 / 8)
|
| 654 |
x0 = src_latents
|
| 655 |
# retake
|
| 656 |
-
is_repaint =
|
| 657 |
-
|
| 658 |
is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length)
|
| 659 |
if is_extend:
|
| 660 |
is_repaint = True
|
|
@@ -662,13 +1005,23 @@ class ACEStepPipeline:
|
|
| 662 |
# TODO: train a mask aware repainting controlnet
|
| 663 |
# to make sure mean = 0, std = 1
|
| 664 |
if not is_repaint:
|
| 665 |
-
target_latents =
|
|
|
|
|
|
|
|
|
|
| 666 |
elif not is_extend:
|
| 667 |
-
# if repaint_end_frame
|
| 668 |
-
repaint_mask = torch.zeros(
|
|
|
|
|
|
|
| 669 |
repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0
|
| 670 |
-
repaint_noise =
|
| 671 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
zt_edit = x0.clone()
|
| 673 |
z0 = repaint_noise
|
| 674 |
elif is_extend:
|
|
@@ -684,73 +1037,107 @@ class ACEStepPipeline:
|
|
| 684 |
if repaint_start_frame < 0:
|
| 685 |
left_pad_frame_length = abs(repaint_start_frame)
|
| 686 |
frame_length = left_pad_frame_length + gt_latents.shape[-1]
|
| 687 |
-
extend_gt_latents = torch.nn.functional.pad(
|
|
|
|
|
|
|
| 688 |
if frame_length > max_infer_fame_length:
|
| 689 |
right_trim_length = frame_length - max_infer_fame_length
|
| 690 |
-
extend_gt_latents = extend_gt_latents[
|
| 691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 692 |
frame_length = max_infer_fame_length
|
| 693 |
repaint_start_frame = 0
|
| 694 |
gt_latents = extend_gt_latents
|
| 695 |
-
|
| 696 |
if repaint_end_frame > src_latents_length:
|
| 697 |
right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1]
|
| 698 |
frame_length = gt_latents.shape[-1] + right_pad_frame_length
|
| 699 |
-
extend_gt_latents = torch.nn.functional.pad(
|
|
|
|
|
|
|
| 700 |
if frame_length > max_infer_fame_length:
|
| 701 |
left_trim_length = frame_length - max_infer_fame_length
|
| 702 |
-
extend_gt_latents = extend_gt_latents[
|
| 703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
frame_length = max_infer_fame_length
|
| 705 |
repaint_end_frame = frame_length
|
| 706 |
gt_latents = extend_gt_latents
|
| 707 |
|
| 708 |
-
repaint_mask = torch.zeros(
|
|
|
|
|
|
|
| 709 |
if left_pad_frame_length > 0:
|
| 710 |
-
repaint_mask[
|
| 711 |
if right_pad_frame_length > 0:
|
| 712 |
-
repaint_mask[
|
| 713 |
x0 = gt_latents
|
| 714 |
padd_list = []
|
| 715 |
if left_pad_frame_length > 0:
|
| 716 |
padd_list.append(retake_latents[:, :, :, :left_pad_frame_length])
|
| 717 |
-
padd_list.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 718 |
if right_pad_frame_length > 0:
|
| 719 |
padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:])
|
| 720 |
target_latents = torch.cat(padd_list, dim=-1)
|
| 721 |
-
assert
|
|
|
|
|
|
|
| 722 |
zt_edit = x0.clone()
|
| 723 |
z0 = target_latents
|
| 724 |
|
| 725 |
init_timestep = 1000
|
| 726 |
if audio2audio_enable and ref_latents is not None:
|
| 727 |
-
target_latents, init_timestep = self.add_latents_noise(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 728 |
|
| 729 |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
|
| 730 |
-
|
| 731 |
# guidance interval
|
| 732 |
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
|
| 733 |
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
|
| 734 |
-
logger.info(
|
|
|
|
|
|
|
| 735 |
|
| 736 |
momentum_buffer = MomentumBuffer()
|
| 737 |
|
| 738 |
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
|
| 739 |
handlers = []
|
| 740 |
-
|
| 741 |
def hook(module, input, output):
|
| 742 |
output[:] *= tau
|
| 743 |
return output
|
| 744 |
-
|
| 745 |
for i in range(l_min, l_max):
|
| 746 |
-
handler = self.ace_step_transformer.lyric_encoder.encoders[
|
|
|
|
|
|
|
| 747 |
handlers.append(handler)
|
| 748 |
-
|
| 749 |
-
encoder_hidden_states, encoder_hidden_mask =
|
| 750 |
-
|
|
|
|
|
|
|
| 751 |
for hook in handlers:
|
| 752 |
hook.remove()
|
| 753 |
-
|
| 754 |
return encoder_hidden_states
|
| 755 |
|
| 756 |
# P(speaker, text, lyric)
|
|
@@ -767,12 +1154,16 @@ class ACEStepPipeline:
|
|
| 767 |
encoder_hidden_states_null = forward_encoder_with_temperature(
|
| 768 |
self,
|
| 769 |
inputs={
|
| 770 |
-
"encoder_text_hidden_states":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 771 |
"text_attention_mask": text_attention_mask,
|
| 772 |
"speaker_embeds": torch.zeros_like(speaker_embds),
|
| 773 |
"lyric_token_idx": lyric_token_ids,
|
| 774 |
"lyric_mask": lyric_mask,
|
| 775 |
-
}
|
| 776 |
)
|
| 777 |
else:
|
| 778 |
# P(null_speaker, null_text, null_lyric)
|
|
@@ -783,7 +1174,7 @@ class ACEStepPipeline:
|
|
| 783 |
torch.zeros_like(lyric_token_ids),
|
| 784 |
lyric_mask,
|
| 785 |
)
|
| 786 |
-
|
| 787 |
encoder_hidden_states_no_lyric = None
|
| 788 |
if do_double_condition_guidance:
|
| 789 |
# P(null_speaker, text, lyric_weaker)
|
|
@@ -796,7 +1187,7 @@ class ACEStepPipeline:
|
|
| 796 |
"speaker_embeds": torch.zeros_like(speaker_embds),
|
| 797 |
"lyric_token_idx": lyric_token_ids,
|
| 798 |
"lyric_mask": lyric_mask,
|
| 799 |
-
}
|
| 800 |
)
|
| 801 |
# P(null_speaker, text, no_lyric)
|
| 802 |
else:
|
|
@@ -808,26 +1199,34 @@ class ACEStepPipeline:
|
|
| 808 |
lyric_mask,
|
| 809 |
)
|
| 810 |
|
| 811 |
-
def forward_diffusion_with_temperature(
|
|
|
|
|
|
|
| 812 |
handlers = []
|
| 813 |
-
|
| 814 |
def hook(module, input, output):
|
| 815 |
output[:] *= tau
|
| 816 |
return output
|
| 817 |
-
|
| 818 |
for i in range(l_min, l_max):
|
| 819 |
-
handler = self.ace_step_transformer.transformer_blocks[
|
|
|
|
|
|
|
| 820 |
handlers.append(handler)
|
| 821 |
-
handler = self.ace_step_transformer.transformer_blocks[
|
|
|
|
|
|
|
| 822 |
handlers.append(handler)
|
| 823 |
|
| 824 |
-
sample = self.ace_step_transformer.decode(
|
| 825 |
-
|
|
|
|
|
|
|
| 826 |
for hook in handlers:
|
| 827 |
hook.remove()
|
| 828 |
-
|
| 829 |
return sample
|
| 830 |
-
|
| 831 |
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
|
| 832 |
|
| 833 |
if t > init_timestep:
|
|
@@ -850,8 +1249,15 @@ class ACEStepPipeline:
|
|
| 850 |
# compute current guidance scale
|
| 851 |
if guidance_interval_decay > 0:
|
| 852 |
# Linearly interpolate to calculate the current guidance scale
|
| 853 |
-
progress = (i - start_idx) / (
|
| 854 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 855 |
else:
|
| 856 |
current_guidance_scale = guidance_scale
|
| 857 |
|
|
@@ -869,7 +1275,10 @@ class ACEStepPipeline:
|
|
| 869 |
).sample
|
| 870 |
|
| 871 |
noise_pred_with_only_text_cond = None
|
| 872 |
-
if
|
|
|
|
|
|
|
|
|
|
| 873 |
noise_pred_with_only_text_cond = self.ace_step_transformer.decode(
|
| 874 |
hidden_states=latent_model_input,
|
| 875 |
attention_mask=attention_mask,
|
|
@@ -901,7 +1310,10 @@ class ACEStepPipeline:
|
|
| 901 |
timestep=timestep,
|
| 902 |
).sample
|
| 903 |
|
| 904 |
-
if
|
|
|
|
|
|
|
|
|
|
| 905 |
noise_pred = cfg_double_condition_forward(
|
| 906 |
cond_output=noise_pred_with_cond,
|
| 907 |
uncond_output=noise_pred_uncond,
|
|
@@ -930,7 +1342,7 @@ class ACEStepPipeline:
|
|
| 930 |
guidance_scale=current_guidance_scale,
|
| 931 |
i=i,
|
| 932 |
zero_steps=zero_steps,
|
| 933 |
-
use_zero_init=use_zero_init
|
| 934 |
)
|
| 935 |
else:
|
| 936 |
latent_model_input = latents
|
|
@@ -945,9 +1357,9 @@ class ACEStepPipeline:
|
|
| 945 |
).sample
|
| 946 |
|
| 947 |
if is_repaint and i >= n_min:
|
| 948 |
-
t_i = t/1000
|
| 949 |
-
if i+1 < len(timesteps):
|
| 950 |
-
t_im1 = (timesteps[i+1])/1000
|
| 951 |
else:
|
| 952 |
t_im1 = torch.zeros_like(t_i).to(t_i.device)
|
| 953 |
dtype = noise_pred.dtype
|
|
@@ -956,18 +1368,37 @@ class ACEStepPipeline:
|
|
| 956 |
prev_sample = prev_sample.to(dtype)
|
| 957 |
target_latents = prev_sample
|
| 958 |
zt_src = (1 - t_im1) * x0 + (t_im1) * z0
|
| 959 |
-
target_latents = torch.where(
|
|
|
|
|
|
|
| 960 |
else:
|
| 961 |
-
target_latents = scheduler.step(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 962 |
|
| 963 |
if is_extend:
|
| 964 |
if to_right_pad_gt_latents is not None:
|
| 965 |
-
target_latents = torch.cat(
|
|
|
|
|
|
|
| 966 |
if to_left_pad_gt_latents is not None:
|
| 967 |
-
target_latents = torch.cat(
|
|
|
|
|
|
|
| 968 |
return target_latents
|
| 969 |
|
| 970 |
-
def latents2audio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 971 |
output_audio_paths = []
|
| 972 |
bs = latents.shape[0]
|
| 973 |
audio_lengths = [target_wav_duration_second * sample_rate] * bs
|
|
@@ -976,11 +1407,15 @@ class ACEStepPipeline:
|
|
| 976 |
_, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate)
|
| 977 |
pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs]
|
| 978 |
for i in tqdm(range(bs)):
|
| 979 |
-
output_audio_path = self.save_wav_file(
|
|
|
|
|
|
|
| 980 |
output_audio_paths.append(output_audio_path)
|
| 981 |
return output_audio_paths
|
| 982 |
|
| 983 |
-
def save_wav_file(
|
|
|
|
|
|
|
| 984 |
if save_path is None:
|
| 985 |
logger.warning("save_path is None, using default path ./outputs/")
|
| 986 |
base_path = f"./outputs"
|
|
@@ -989,9 +1424,17 @@ class ACEStepPipeline:
|
|
| 989 |
base_path = save_path
|
| 990 |
ensure_directory_exists(base_path)
|
| 991 |
|
| 992 |
-
output_path_flac =
|
|
|
|
|
|
|
| 993 |
target_wav = target_wav.float()
|
| 994 |
-
torchaudio.save(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 995 |
return output_path_flac
|
| 996 |
|
| 997 |
def infer_latents(self, input_audio_path):
|
|
@@ -1017,7 +1460,7 @@ class ACEStepPipeline:
|
|
| 1017 |
omega_scale: int = 10.0,
|
| 1018 |
manual_seeds: list = None,
|
| 1019 |
guidance_interval: float = 0.5,
|
| 1020 |
-
guidance_interval_decay: float = 0
|
| 1021 |
min_guidance_scale: float = 3.0,
|
| 1022 |
use_erg_tag: bool = True,
|
| 1023 |
use_erg_lyric: bool = True,
|
|
@@ -1060,22 +1503,30 @@ class ACEStepPipeline:
|
|
| 1060 |
start_time = time.time()
|
| 1061 |
|
| 1062 |
random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds)
|
| 1063 |
-
retake_random_generators, actual_retake_seeds = self.set_seeds(
|
|
|
|
|
|
|
| 1064 |
|
| 1065 |
if isinstance(oss_steps, str) and len(oss_steps) > 0:
|
| 1066 |
oss_steps = list(map(int, oss_steps.split(",")))
|
| 1067 |
else:
|
| 1068 |
oss_steps = []
|
| 1069 |
-
|
| 1070 |
texts = [prompt]
|
| 1071 |
-
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(
|
|
|
|
|
|
|
| 1072 |
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
|
| 1073 |
text_attention_mask = text_attention_mask.repeat(batch_size, 1)
|
| 1074 |
|
| 1075 |
encoder_text_hidden_states_null = None
|
| 1076 |
if use_erg_tag:
|
| 1077 |
-
encoder_text_hidden_states_null = self.get_text_embeddings_null(
|
| 1078 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1079 |
|
| 1080 |
# not support for released checkpoint
|
| 1081 |
speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype)
|
|
@@ -1086,8 +1537,18 @@ class ACEStepPipeline:
|
|
| 1086 |
if len(lyrics) > 0:
|
| 1087 |
lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug)
|
| 1088 |
lyric_mask = [1] * len(lyric_token_idx)
|
| 1089 |
-
lyric_token_idx =
|
| 1090 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1091 |
|
| 1092 |
if audio_duration <= 0:
|
| 1093 |
audio_duration = random.uniform(30.0, 240.0)
|
|
@@ -1102,16 +1563,24 @@ class ACEStepPipeline:
|
|
| 1102 |
if task == "retake":
|
| 1103 |
repaint_start = 0
|
| 1104 |
repaint_end = audio_duration
|
| 1105 |
-
|
| 1106 |
src_latents = None
|
| 1107 |
if src_audio_path is not None:
|
| 1108 |
-
assert src_audio_path is not None and task in (
|
| 1109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1110 |
src_latents = self.infer_latents(src_audio_path)
|
| 1111 |
|
| 1112 |
ref_latents = None
|
| 1113 |
if ref_audio_input is not None and audio2audio_enable:
|
| 1114 |
-
assert
|
|
|
|
|
|
|
| 1115 |
assert os.path.exists(
|
| 1116 |
ref_audio_input
|
| 1117 |
), f"ref_audio_input {ref_audio_input} does not exist"
|
|
@@ -1119,17 +1588,39 @@ class ACEStepPipeline:
|
|
| 1119 |
|
| 1120 |
if task == "edit":
|
| 1121 |
texts = [edit_target_prompt]
|
| 1122 |
-
target_encoder_text_hidden_states, target_text_attention_mask =
|
| 1123 |
-
|
| 1124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1125 |
|
| 1126 |
-
target_lyric_token_idx =
|
| 1127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1128 |
if len(edit_target_lyrics) > 0:
|
| 1129 |
-
target_lyric_token_idx = self.tokenize_lyrics(
|
|
|
|
|
|
|
| 1130 |
target_lyric_mask = [1] * len(target_lyric_token_idx)
|
| 1131 |
-
target_lyric_token_idx =
|
| 1132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1133 |
|
| 1134 |
target_speaker_embeds = speaker_embeds.clone()
|
| 1135 |
|
|
@@ -1145,7 +1636,7 @@ class ACEStepPipeline:
|
|
| 1145 |
target_lyric_token_ids=target_lyric_token_idx,
|
| 1146 |
target_lyric_mask=target_lyric_mask,
|
| 1147 |
src_latents=src_latents,
|
| 1148 |
-
random_generators=retake_random_generators,
|
| 1149 |
infer_steps=infer_step,
|
| 1150 |
guidance_scale=guidance_scale,
|
| 1151 |
n_min=edit_n_min,
|
|
@@ -1233,7 +1724,7 @@ class ACEStepPipeline:
|
|
| 1233 |
"repaint_end": repaint_end,
|
| 1234 |
"edit_n_min": edit_n_min,
|
| 1235 |
"edit_n_max": edit_n_max,
|
| 1236 |
-
"edit_n_avg": edit_n_avg,
|
| 1237 |
"src_audio_path": src_audio_path,
|
| 1238 |
"edit_target_prompt": edit_target_prompt,
|
| 1239 |
"edit_target_lyrics": edit_target_lyrics,
|
|
@@ -1243,7 +1734,9 @@ class ACEStepPipeline:
|
|
| 1243 |
}
|
| 1244 |
# save input_params_json
|
| 1245 |
for output_audio_path in output_paths:
|
| 1246 |
-
input_params_json_save_path = output_audio_path.replace(
|
|
|
|
|
|
|
| 1247 |
input_params_json["audio_path"] = output_audio_path
|
| 1248 |
with open(input_params_json_save_path, "w", encoding="utf-8") as f:
|
| 1249 |
json.dump(input_params_json, f, indent=4, ensure_ascii=False)
|
|
|
|
| 12 |
from huggingface_hub import hf_hub_download, snapshot_download
|
| 13 |
|
| 14 |
# from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 15 |
+
from schedulers.scheduling_flow_match_euler_discrete import (
|
| 16 |
+
FlowMatchEulerDiscreteScheduler,
|
| 17 |
+
)
|
| 18 |
+
from schedulers.scheduling_flow_match_heun_discrete import (
|
| 19 |
+
FlowMatchHeunDiscreteScheduler,
|
| 20 |
+
)
|
| 21 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import (
|
| 22 |
+
retrieve_timesteps,
|
| 23 |
+
)
|
| 24 |
from diffusers.utils.torch_utils import randn_tensor
|
| 25 |
from transformers import UMT5EncoderModel, AutoTokenizer
|
| 26 |
|
|
|
|
| 28 |
from music_dcae.music_dcae_pipeline import MusicDCAE
|
| 29 |
from models.ace_step_transformer import ACEStepTransformer2DModel
|
| 30 |
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
|
| 31 |
+
from apg_guidance import (
|
| 32 |
+
apg_forward,
|
| 33 |
+
MomentumBuffer,
|
| 34 |
+
cfg_forward,
|
| 35 |
+
cfg_zero_star,
|
| 36 |
+
cfg_double_condition_forward,
|
| 37 |
+
)
|
| 38 |
import torchaudio
|
| 39 |
import torio
|
| 40 |
|
| 41 |
|
| 42 |
torch.backends.cudnn.benchmark = False
|
| 43 |
+
torch.set_float32_matmul_precision("high")
|
| 44 |
torch.backends.cudnn.deterministic = True
|
| 45 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 46 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 47 |
|
| 48 |
|
| 49 |
SUPPORT_LANGUAGES = {
|
| 50 |
+
"en": 259,
|
| 51 |
+
"de": 260,
|
| 52 |
+
"fr": 262,
|
| 53 |
+
"es": 284,
|
| 54 |
+
"it": 285,
|
| 55 |
+
"pt": 286,
|
| 56 |
+
"pl": 294,
|
| 57 |
+
"tr": 295,
|
| 58 |
+
"ru": 267,
|
| 59 |
+
"cs": 293,
|
| 60 |
+
"nl": 297,
|
| 61 |
+
"ar": 5022,
|
| 62 |
+
"zh": 5023,
|
| 63 |
+
"ja": 5412,
|
| 64 |
+
"hu": 5753,
|
| 65 |
+
"ko": 6152,
|
| 66 |
+
"hi": 6680,
|
| 67 |
}
|
| 68 |
|
| 69 |
structure_pattern = re.compile(r"\[.*?\]")
|
|
|
|
| 81 |
# class ACEStepPipeline(DiffusionPipeline):
|
| 82 |
class ACEStepPipeline:
|
| 83 |
|
| 84 |
+
def __init__(
|
| 85 |
+
self,
|
| 86 |
+
checkpoint_dir=None,
|
| 87 |
+
device_id=0,
|
| 88 |
+
dtype="bfloat16",
|
| 89 |
+
text_encoder_checkpoint_path=None,
|
| 90 |
+
persistent_storage_path=None,
|
| 91 |
+
torch_compile=False,
|
| 92 |
+
**kwargs,
|
| 93 |
+
):
|
| 94 |
if not checkpoint_dir:
|
| 95 |
if persistent_storage_path is None:
|
| 96 |
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
|
|
|
|
| 98 |
checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints")
|
| 99 |
ensure_directory_exists(checkpoint_dir)
|
| 100 |
self.checkpoint_dir = checkpoint_dir
|
| 101 |
+
device = (
|
| 102 |
+
torch.device(f"cuda:{device_id}")
|
| 103 |
+
if torch.cuda.is_available()
|
| 104 |
+
else torch.device("cpu")
|
| 105 |
+
)
|
| 106 |
if device.type == "cpu" and torch.backends.mps.is_available():
|
| 107 |
device = torch.device("mps")
|
| 108 |
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
|
|
|
|
| 112 |
self.loaded = False
|
| 113 |
self.torch_compile = torch_compile
|
| 114 |
self.lora_path = "none"
|
| 115 |
+
|
| 116 |
def load_lora(self, lora_name_or_path):
|
| 117 |
if lora_name_or_path != self.lora_path and lora_name_or_path != "none":
|
| 118 |
if not os.path.exists(lora_name_or_path):
|
| 119 |
+
lora_download_path = snapshot_download(
|
| 120 |
+
lora_name_or_path, cache_dir=self.checkpoint_dir
|
| 121 |
+
)
|
| 122 |
else:
|
| 123 |
lora_download_path = lora_name_or_path
|
| 124 |
if self.lora_path != "none":
|
| 125 |
self.ace_step_transformer.unload_lora()
|
| 126 |
+
self.ace_step_transformer.load_lora_adapter(
|
| 127 |
+
os.path.join(lora_download_path, "pytorch_lora_weights.safetensors"),
|
| 128 |
+
adapter_name="zh_rap_lora",
|
| 129 |
+
with_alpha=True,
|
| 130 |
+
)
|
| 131 |
+
logger.info(
|
| 132 |
+
f"Loading lora weights from: {lora_name_or_path} download path is: {lora_download_path}"
|
| 133 |
+
)
|
| 134 |
self.lora_path = lora_name_or_path
|
| 135 |
elif self.lora_path != "none" and lora_name_or_path == "none":
|
| 136 |
logger.info("No lora weights to load.")
|
|
|
|
| 145 |
text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base")
|
| 146 |
|
| 147 |
files_exist = (
|
| 148 |
+
os.path.exists(os.path.join(dcae_model_path, "config.json"))
|
| 149 |
+
and os.path.exists(
|
| 150 |
+
os.path.join(dcae_model_path, "diffusion_pytorch_model.safetensors")
|
| 151 |
+
)
|
| 152 |
+
and os.path.exists(os.path.join(vocoder_model_path, "config.json"))
|
| 153 |
+
and os.path.exists(
|
| 154 |
+
os.path.join(vocoder_model_path, "diffusion_pytorch_model.safetensors")
|
| 155 |
+
)
|
| 156 |
+
and os.path.exists(os.path.join(ace_step_model_path, "config.json"))
|
| 157 |
+
and os.path.exists(
|
| 158 |
+
os.path.join(ace_step_model_path, "diffusion_pytorch_model.safetensors")
|
| 159 |
+
)
|
| 160 |
+
and os.path.exists(os.path.join(text_encoder_model_path, "config.json"))
|
| 161 |
+
and os.path.exists(
|
| 162 |
+
os.path.join(text_encoder_model_path, "model.safetensors")
|
| 163 |
+
)
|
| 164 |
+
and os.path.exists(
|
| 165 |
+
os.path.join(text_encoder_model_path, "special_tokens_map.json")
|
| 166 |
+
)
|
| 167 |
+
and os.path.exists(
|
| 168 |
+
os.path.join(text_encoder_model_path, "tokenizer_config.json")
|
| 169 |
+
)
|
| 170 |
+
and os.path.exists(os.path.join(text_encoder_model_path, "tokenizer.json"))
|
| 171 |
)
|
| 172 |
|
| 173 |
if not files_exist:
|
| 174 |
+
logger.info(
|
| 175 |
+
f"Checkpoint directory {checkpoint_dir} is not complete, downloading from Hugging Face Hub"
|
| 176 |
+
)
|
| 177 |
|
| 178 |
# download music dcae model
|
| 179 |
os.makedirs(dcae_model_path, exist_ok=True)
|
| 180 |
+
hf_hub_download(
|
| 181 |
+
repo_id=REPO_ID,
|
| 182 |
+
subfolder="music_dcae_f8c8",
|
| 183 |
+
filename="config.json",
|
| 184 |
+
local_dir=checkpoint_dir,
|
| 185 |
+
local_dir_use_symlinks=False,
|
| 186 |
+
)
|
| 187 |
+
hf_hub_download(
|
| 188 |
+
repo_id=REPO_ID,
|
| 189 |
+
subfolder="music_dcae_f8c8",
|
| 190 |
+
filename="diffusion_pytorch_model.safetensors",
|
| 191 |
+
local_dir=checkpoint_dir,
|
| 192 |
+
local_dir_use_symlinks=False,
|
| 193 |
+
)
|
| 194 |
|
| 195 |
# download vocoder model
|
| 196 |
os.makedirs(vocoder_model_path, exist_ok=True)
|
| 197 |
+
hf_hub_download(
|
| 198 |
+
repo_id=REPO_ID,
|
| 199 |
+
subfolder="music_vocoder",
|
| 200 |
+
filename="config.json",
|
| 201 |
+
local_dir=checkpoint_dir,
|
| 202 |
+
local_dir_use_symlinks=False,
|
| 203 |
+
)
|
| 204 |
+
hf_hub_download(
|
| 205 |
+
repo_id=REPO_ID,
|
| 206 |
+
subfolder="music_vocoder",
|
| 207 |
+
filename="diffusion_pytorch_model.safetensors",
|
| 208 |
+
local_dir=checkpoint_dir,
|
| 209 |
+
local_dir_use_symlinks=False,
|
| 210 |
+
)
|
| 211 |
|
| 212 |
# download ace_step transformer model
|
| 213 |
os.makedirs(ace_step_model_path, exist_ok=True)
|
| 214 |
+
hf_hub_download(
|
| 215 |
+
repo_id=REPO_ID,
|
| 216 |
+
subfolder="ace_step_transformer",
|
| 217 |
+
filename="config.json",
|
| 218 |
+
local_dir=checkpoint_dir,
|
| 219 |
+
local_dir_use_symlinks=False,
|
| 220 |
+
)
|
| 221 |
+
hf_hub_download(
|
| 222 |
+
repo_id=REPO_ID,
|
| 223 |
+
subfolder="ace_step_transformer",
|
| 224 |
+
filename="diffusion_pytorch_model.safetensors",
|
| 225 |
+
local_dir=checkpoint_dir,
|
| 226 |
+
local_dir_use_symlinks=False,
|
| 227 |
+
)
|
| 228 |
|
| 229 |
# download text encoder model
|
| 230 |
os.makedirs(text_encoder_model_path, exist_ok=True)
|
| 231 |
+
hf_hub_download(
|
| 232 |
+
repo_id=REPO_ID,
|
| 233 |
+
subfolder="umt5-base",
|
| 234 |
+
filename="config.json",
|
| 235 |
+
local_dir=checkpoint_dir,
|
| 236 |
+
local_dir_use_symlinks=False,
|
| 237 |
+
)
|
| 238 |
+
hf_hub_download(
|
| 239 |
+
repo_id=REPO_ID,
|
| 240 |
+
subfolder="umt5-base",
|
| 241 |
+
filename="model.safetensors",
|
| 242 |
+
local_dir=checkpoint_dir,
|
| 243 |
+
local_dir_use_symlinks=False,
|
| 244 |
+
)
|
| 245 |
+
hf_hub_download(
|
| 246 |
+
repo_id=REPO_ID,
|
| 247 |
+
subfolder="umt5-base",
|
| 248 |
+
filename="special_tokens_map.json",
|
| 249 |
+
local_dir=checkpoint_dir,
|
| 250 |
+
local_dir_use_symlinks=False,
|
| 251 |
+
)
|
| 252 |
+
hf_hub_download(
|
| 253 |
+
repo_id=REPO_ID,
|
| 254 |
+
subfolder="umt5-base",
|
| 255 |
+
filename="tokenizer_config.json",
|
| 256 |
+
local_dir=checkpoint_dir,
|
| 257 |
+
local_dir_use_symlinks=False,
|
| 258 |
+
)
|
| 259 |
+
hf_hub_download(
|
| 260 |
+
repo_id=REPO_ID,
|
| 261 |
+
subfolder="umt5-base",
|
| 262 |
+
filename="tokenizer.json",
|
| 263 |
+
local_dir=checkpoint_dir,
|
| 264 |
+
local_dir_use_symlinks=False,
|
| 265 |
+
)
|
| 266 |
|
| 267 |
logger.info("Models downloaded")
|
| 268 |
|
|
|
|
| 271 |
ace_step_checkpoint_path = ace_step_model_path
|
| 272 |
text_encoder_checkpoint_path = text_encoder_model_path
|
| 273 |
|
| 274 |
+
self.music_dcae = MusicDCAE(
|
| 275 |
+
dcae_checkpoint_path=dcae_checkpoint_path,
|
| 276 |
+
vocoder_checkpoint_path=vocoder_checkpoint_path,
|
| 277 |
+
)
|
| 278 |
self.music_dcae.to(device).eval().to(self.dtype)
|
| 279 |
|
| 280 |
+
self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(
|
| 281 |
+
ace_step_checkpoint_path, torch_dtype=self.dtype
|
| 282 |
+
)
|
| 283 |
self.ace_step_transformer.to(device).eval().to(self.dtype)
|
| 284 |
|
| 285 |
lang_segment = LangSegment()
|
| 286 |
|
| 287 |
+
lang_segment.setfilters(
|
| 288 |
+
[
|
| 289 |
+
"af",
|
| 290 |
+
"am",
|
| 291 |
+
"an",
|
| 292 |
+
"ar",
|
| 293 |
+
"as",
|
| 294 |
+
"az",
|
| 295 |
+
"be",
|
| 296 |
+
"bg",
|
| 297 |
+
"bn",
|
| 298 |
+
"br",
|
| 299 |
+
"bs",
|
| 300 |
+
"ca",
|
| 301 |
+
"cs",
|
| 302 |
+
"cy",
|
| 303 |
+
"da",
|
| 304 |
+
"de",
|
| 305 |
+
"dz",
|
| 306 |
+
"el",
|
| 307 |
+
"en",
|
| 308 |
+
"eo",
|
| 309 |
+
"es",
|
| 310 |
+
"et",
|
| 311 |
+
"eu",
|
| 312 |
+
"fa",
|
| 313 |
+
"fi",
|
| 314 |
+
"fo",
|
| 315 |
+
"fr",
|
| 316 |
+
"ga",
|
| 317 |
+
"gl",
|
| 318 |
+
"gu",
|
| 319 |
+
"he",
|
| 320 |
+
"hi",
|
| 321 |
+
"hr",
|
| 322 |
+
"ht",
|
| 323 |
+
"hu",
|
| 324 |
+
"hy",
|
| 325 |
+
"id",
|
| 326 |
+
"is",
|
| 327 |
+
"it",
|
| 328 |
+
"ja",
|
| 329 |
+
"jv",
|
| 330 |
+
"ka",
|
| 331 |
+
"kk",
|
| 332 |
+
"km",
|
| 333 |
+
"kn",
|
| 334 |
+
"ko",
|
| 335 |
+
"ku",
|
| 336 |
+
"ky",
|
| 337 |
+
"la",
|
| 338 |
+
"lb",
|
| 339 |
+
"lo",
|
| 340 |
+
"lt",
|
| 341 |
+
"lv",
|
| 342 |
+
"mg",
|
| 343 |
+
"mk",
|
| 344 |
+
"ml",
|
| 345 |
+
"mn",
|
| 346 |
+
"mr",
|
| 347 |
+
"ms",
|
| 348 |
+
"mt",
|
| 349 |
+
"nb",
|
| 350 |
+
"ne",
|
| 351 |
+
"nl",
|
| 352 |
+
"nn",
|
| 353 |
+
"no",
|
| 354 |
+
"oc",
|
| 355 |
+
"or",
|
| 356 |
+
"pa",
|
| 357 |
+
"pl",
|
| 358 |
+
"ps",
|
| 359 |
+
"pt",
|
| 360 |
+
"qu",
|
| 361 |
+
"ro",
|
| 362 |
+
"ru",
|
| 363 |
+
"rw",
|
| 364 |
+
"se",
|
| 365 |
+
"si",
|
| 366 |
+
"sk",
|
| 367 |
+
"sl",
|
| 368 |
+
"sq",
|
| 369 |
+
"sr",
|
| 370 |
+
"sv",
|
| 371 |
+
"sw",
|
| 372 |
+
"ta",
|
| 373 |
+
"te",
|
| 374 |
+
"th",
|
| 375 |
+
"tl",
|
| 376 |
+
"tr",
|
| 377 |
+
"ug",
|
| 378 |
+
"uk",
|
| 379 |
+
"ur",
|
| 380 |
+
"vi",
|
| 381 |
+
"vo",
|
| 382 |
+
"wa",
|
| 383 |
+
"xh",
|
| 384 |
+
"zh",
|
| 385 |
+
"zu",
|
| 386 |
+
]
|
| 387 |
+
)
|
| 388 |
self.lang_segment = lang_segment
|
| 389 |
self.lyric_tokenizer = VoiceBpeTokenizer()
|
| 390 |
+
text_encoder_model = UMT5EncoderModel.from_pretrained(
|
| 391 |
+
text_encoder_checkpoint_path, torch_dtype=self.dtype
|
| 392 |
+
).eval()
|
| 393 |
text_encoder_model = text_encoder_model.to(device).to(self.dtype)
|
| 394 |
text_encoder_model.requires_grad_(False)
|
| 395 |
self.text_encoder_model = text_encoder_model
|
| 396 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(
|
| 397 |
+
text_encoder_checkpoint_path
|
| 398 |
+
)
|
| 399 |
self.loaded = True
|
| 400 |
|
| 401 |
# compile
|
|
|
|
| 405 |
self.text_encoder_model = torch.compile(self.text_encoder_model)
|
| 406 |
|
| 407 |
def get_text_embeddings(self, texts, device, text_max_length=256):
|
| 408 |
+
inputs = self.text_tokenizer(
|
| 409 |
+
texts,
|
| 410 |
+
return_tensors="pt",
|
| 411 |
+
padding=True,
|
| 412 |
+
truncation=True,
|
| 413 |
+
max_length=text_max_length,
|
| 414 |
+
)
|
| 415 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 416 |
if self.text_encoder_model.device != device:
|
| 417 |
self.text_encoder_model.to(device)
|
|
|
|
| 420 |
last_hidden_states = outputs.last_hidden_state
|
| 421 |
attention_mask = inputs["attention_mask"]
|
| 422 |
return last_hidden_states, attention_mask
|
| 423 |
+
|
| 424 |
+
def get_text_embeddings_null(
|
| 425 |
+
self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10
|
| 426 |
+
):
|
| 427 |
+
inputs = self.text_tokenizer(
|
| 428 |
+
texts,
|
| 429 |
+
return_tensors="pt",
|
| 430 |
+
padding=True,
|
| 431 |
+
truncation=True,
|
| 432 |
+
max_length=text_max_length,
|
| 433 |
+
)
|
| 434 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 435 |
if self.text_encoder_model.device != device:
|
| 436 |
self.text_encoder_model.to(device)
|
| 437 |
+
|
| 438 |
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
|
| 439 |
handlers = []
|
| 440 |
+
|
| 441 |
def hook(module, input, output):
|
| 442 |
output[:] *= tau
|
| 443 |
return output
|
| 444 |
+
|
| 445 |
for i in range(l_min, l_max):
|
| 446 |
+
handler = (
|
| 447 |
+
self.text_encoder_model.encoder.block[i]
|
| 448 |
+
.layer[0]
|
| 449 |
+
.SelfAttention.q.register_forward_hook(hook)
|
| 450 |
+
)
|
| 451 |
handlers.append(handler)
|
| 452 |
+
|
| 453 |
with torch.no_grad():
|
| 454 |
outputs = self.text_encoder_model(**inputs)
|
| 455 |
last_hidden_states = outputs.last_hidden_state
|
| 456 |
+
|
| 457 |
for hook in handlers:
|
| 458 |
hook.remove()
|
| 459 |
+
|
| 460 |
return last_hidden_states
|
| 461 |
+
|
| 462 |
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
|
| 463 |
return last_hidden_states
|
| 464 |
|
| 465 |
def set_seeds(self, batch_size, manual_seeds=None):
|
| 466 |
+
processed_input_seeds = None
|
| 467 |
if manual_seeds is not None:
|
| 468 |
if isinstance(manual_seeds, str):
|
| 469 |
if "," in manual_seeds:
|
| 470 |
+
processed_input_seeds = list(map(int, manual_seeds.split(",")))
|
| 471 |
elif manual_seeds.isdigit():
|
| 472 |
+
processed_input_seeds = int(manual_seeds)
|
| 473 |
+
elif isinstance(manual_seeds, list) and all(
|
| 474 |
+
isinstance(s, int) for s in manual_seeds
|
| 475 |
+
):
|
| 476 |
+
if len(manual_seeds) > 0:
|
| 477 |
+
processed_input_seeds = list(manual_seeds)
|
| 478 |
+
elif isinstance(manual_seeds, int):
|
| 479 |
+
processed_input_seeds = manual_seeds
|
| 480 |
+
random_generators = [
|
| 481 |
+
torch.Generator(device=self.device) for _ in range(batch_size)
|
| 482 |
+
]
|
| 483 |
actual_seeds = []
|
| 484 |
for i in range(batch_size):
|
| 485 |
+
current_seed_for_generator = None
|
| 486 |
+
if processed_input_seeds is None:
|
| 487 |
+
current_seed_for_generator = torch.randint(0, 2**32, (1,)).item()
|
| 488 |
+
elif isinstance(processed_input_seeds, int):
|
| 489 |
+
current_seed_for_generator = processed_input_seeds
|
| 490 |
+
elif isinstance(processed_input_seeds, list):
|
| 491 |
+
if i < len(processed_input_seeds):
|
| 492 |
+
current_seed_for_generator = processed_input_seeds[i]
|
| 493 |
+
else:
|
| 494 |
+
current_seed_for_generator = processed_input_seeds[-1]
|
| 495 |
+
if current_seed_for_generator is None:
|
| 496 |
+
current_seed_for_generator = torch.randint(0, 2**32, (1,)).item()
|
| 497 |
+
random_generators[i].manual_seed(current_seed_for_generator)
|
| 498 |
+
actual_seeds.append(current_seed_for_generator)
|
| 499 |
return random_generators, actual_seeds
|
| 500 |
|
| 501 |
def get_lang(self, text):
|
| 502 |
language = "en"
|
| 503 |
+
try:
|
| 504 |
_ = self.lang_segment.getTexts(text)
|
| 505 |
langCounts = self.lang_segment.getCounts()
|
| 506 |
language = langCounts[0][0]
|
|
|
|
| 534 |
else:
|
| 535 |
token_idx = self.lyric_tokenizer.encode(line, lang)
|
| 536 |
if debug:
|
| 537 |
+
toks = self.lyric_tokenizer.batch_decode(
|
| 538 |
+
[[tok_id] for tok_id in token_idx]
|
| 539 |
+
)
|
| 540 |
logger.info(f"debbug {line} --> {lang} --> {toks}")
|
| 541 |
lyric_token_idx = lyric_token_idx + token_idx + [2]
|
| 542 |
except Exception as e:
|
|
|
|
| 565 |
attention_mask=None,
|
| 566 |
momentum_buffer=None,
|
| 567 |
momentum_buffer_tar=None,
|
| 568 |
+
return_src_pred=True,
|
| 569 |
):
|
| 570 |
noise_pred_src = None
|
| 571 |
if return_src_pred:
|
| 572 |
+
src_latent_model_input = (
|
| 573 |
+
torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src
|
| 574 |
+
)
|
| 575 |
timestep = t.expand(src_latent_model_input.shape[0])
|
| 576 |
# source
|
| 577 |
noise_pred_src = self.ace_step_transformer(
|
|
|
|
| 586 |
).sample
|
| 587 |
|
| 588 |
if do_classifier_free_guidance:
|
| 589 |
+
noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(
|
| 590 |
+
2
|
| 591 |
+
)
|
| 592 |
if cfg_type == "apg":
|
| 593 |
noise_pred_src = apg_forward(
|
| 594 |
pred_cond=noise_pred_with_cond_src,
|
|
|
|
| 603 |
cfg_strength=guidance_scale,
|
| 604 |
)
|
| 605 |
|
| 606 |
+
tar_latent_model_input = (
|
| 607 |
+
torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar
|
| 608 |
+
)
|
| 609 |
timestep = t.expand(tar_latent_model_input.shape[0])
|
| 610 |
# target
|
| 611 |
noise_pred_tar = self.ace_step_transformer(
|
|
|
|
| 675 |
T_steps = infer_steps
|
| 676 |
frame_length = src_latents.shape[-1]
|
| 677 |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
|
| 678 |
+
|
| 679 |
+
timesteps, T_steps = retrieve_timesteps(
|
| 680 |
+
scheduler, T_steps, device, timesteps=None
|
| 681 |
+
)
|
| 682 |
|
| 683 |
if do_classifier_free_guidance:
|
| 684 |
attention_mask = torch.cat([attention_mask] * 2, dim=0)
|
| 685 |
+
|
| 686 |
+
encoder_text_hidden_states = torch.cat(
|
| 687 |
+
[
|
| 688 |
+
encoder_text_hidden_states,
|
| 689 |
+
torch.zeros_like(encoder_text_hidden_states),
|
| 690 |
+
],
|
| 691 |
+
0,
|
| 692 |
+
)
|
| 693 |
text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0)
|
| 694 |
|
| 695 |
+
target_encoder_text_hidden_states = torch.cat(
|
| 696 |
+
[
|
| 697 |
+
target_encoder_text_hidden_states,
|
| 698 |
+
torch.zeros_like(target_encoder_text_hidden_states),
|
| 699 |
+
],
|
| 700 |
+
0,
|
| 701 |
+
)
|
| 702 |
+
target_text_attention_mask = torch.cat(
|
| 703 |
+
[target_text_attention_mask] * 2, dim=0
|
| 704 |
+
)
|
| 705 |
|
| 706 |
+
speaker_embds = torch.cat(
|
| 707 |
+
[speaker_embds, torch.zeros_like(speaker_embds)], 0
|
| 708 |
+
)
|
| 709 |
+
target_speaker_embeds = torch.cat(
|
| 710 |
+
[target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0
|
| 711 |
+
)
|
| 712 |
|
| 713 |
+
lyric_token_ids = torch.cat(
|
| 714 |
+
[lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0
|
| 715 |
+
)
|
| 716 |
lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0)
|
| 717 |
|
| 718 |
+
target_lyric_token_ids = torch.cat(
|
| 719 |
+
[target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0
|
| 720 |
+
)
|
| 721 |
+
target_lyric_mask = torch.cat(
|
| 722 |
+
[target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0
|
| 723 |
+
)
|
| 724 |
|
| 725 |
momentum_buffer = MomentumBuffer()
|
| 726 |
momentum_buffer_tar = MomentumBuffer()
|
|
|
|
| 737 |
if i < n_min:
|
| 738 |
continue
|
| 739 |
|
| 740 |
+
t_i = t / 1000
|
| 741 |
|
| 742 |
+
if i + 1 < len(timesteps):
|
| 743 |
+
t_im1 = (timesteps[i + 1]) / 1000
|
| 744 |
else:
|
| 745 |
t_im1 = torch.zeros_like(t_i).to(t_i.device)
|
| 746 |
|
|
|
|
| 748 |
# Calculate the average of the V predictions
|
| 749 |
V_delta_avg = torch.zeros_like(x_src)
|
| 750 |
for k in range(n_avg):
|
| 751 |
+
fwd_noise = randn_tensor(
|
| 752 |
+
shape=x_src.shape,
|
| 753 |
+
generator=random_generators,
|
| 754 |
+
device=device,
|
| 755 |
+
dtype=dtype,
|
| 756 |
+
)
|
| 757 |
|
| 758 |
zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise
|
| 759 |
|
|
|
|
| 777 |
guidance_scale=guidance_scale,
|
| 778 |
target_guidance_scale=target_guidance_scale,
|
| 779 |
attention_mask=attention_mask,
|
| 780 |
+
momentum_buffer=momentum_buffer,
|
| 781 |
)
|
| 782 |
+
V_delta_avg += (1 / n_avg) * (
|
| 783 |
+
Vt_tar - Vt_src
|
| 784 |
+
) # - (hfg-1)*( x_src))
|
| 785 |
|
| 786 |
# propagate direct ODE
|
| 787 |
zt_edit = zt_edit.to(torch.float32)
|
| 788 |
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
|
| 789 |
zt_edit = zt_edit.to(V_delta_avg.dtype)
|
| 790 |
+
else: # i >= T_steps-n_min # regular sampling for last n_min steps
|
| 791 |
if i == n_max:
|
| 792 |
+
fwd_noise = randn_tensor(
|
| 793 |
+
shape=x_src.shape,
|
| 794 |
+
generator=random_generators,
|
| 795 |
+
device=device,
|
| 796 |
+
dtype=dtype,
|
| 797 |
+
)
|
| 798 |
scheduler._init_step_index(t)
|
| 799 |
sigma = scheduler.sigmas[scheduler.step_index]
|
| 800 |
xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src
|
| 801 |
xt_tar = zt_edit + xt_src - x_src
|
| 802 |
+
|
| 803 |
_, Vt_tar = self.calc_v(
|
| 804 |
zt_src=None,
|
| 805 |
zt_tar=xt_tar,
|
|
|
|
| 821 |
momentum_buffer_tar=momentum_buffer_tar,
|
| 822 |
return_src_pred=False,
|
| 823 |
)
|
| 824 |
+
|
| 825 |
dtype = Vt_tar.dtype
|
| 826 |
xt_tar = xt_tar.to(torch.float32)
|
| 827 |
prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar
|
| 828 |
+
prev_sample = prev_sample.to(dtype)
|
| 829 |
xt_tar = prev_sample
|
| 830 |
+
|
| 831 |
target_latents = zt_edit if xt_tar is None else xt_tar
|
| 832 |
return target_latents
|
| 833 |
|
|
|
|
| 845 |
timesteps = scheduler.timesteps.unsqueeze(1).to(gt_latents.dtype)
|
| 846 |
indices = indices.to(timesteps.device).to(gt_latents.dtype).unsqueeze(1)
|
| 847 |
nearest_idx = torch.argmin(torch.cdist(indices, timesteps), dim=1)
|
| 848 |
+
sigma = (
|
| 849 |
+
scheduler.sigmas[nearest_idx]
|
| 850 |
+
.flatten()
|
| 851 |
+
.to(gt_latents.device)
|
| 852 |
+
.to(gt_latents.dtype)
|
| 853 |
+
)
|
| 854 |
while len(sigma.shape) < gt_latents.ndim:
|
| 855 |
sigma = sigma.unsqueeze(-1)
|
| 856 |
noisy_image = sigma * noise + (1.0 - sigma) * gt_latents
|
|
|
|
| 894 |
ref_latents=None,
|
| 895 |
):
|
| 896 |
|
| 897 |
+
logger.info(
|
| 898 |
+
"cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(
|
| 899 |
+
cfg_type, guidance_scale, omega_scale
|
| 900 |
+
)
|
| 901 |
+
)
|
| 902 |
do_classifier_free_guidance = True
|
| 903 |
if guidance_scale == 0.0 or guidance_scale == 1.0:
|
| 904 |
do_classifier_free_guidance = False
|
| 905 |
+
|
| 906 |
do_double_condition_guidance = False
|
| 907 |
+
if (
|
| 908 |
+
guidance_scale_text is not None
|
| 909 |
+
and guidance_scale_text > 1.0
|
| 910 |
+
and guidance_scale_lyric is not None
|
| 911 |
+
and guidance_scale_lyric > 1.0
|
| 912 |
+
):
|
| 913 |
do_double_condition_guidance = True
|
| 914 |
+
logger.info(
|
| 915 |
+
"do_double_condition_guidance: {}, guidance_scale_text: {}, guidance_scale_lyric: {}".format(
|
| 916 |
+
do_double_condition_guidance,
|
| 917 |
+
guidance_scale_text,
|
| 918 |
+
guidance_scale_lyric,
|
| 919 |
+
)
|
| 920 |
+
)
|
| 921 |
|
| 922 |
device = encoder_text_hidden_states.device
|
| 923 |
dtype = encoder_text_hidden_states.dtype
|
|
|
|
| 933 |
num_train_timesteps=1000,
|
| 934 |
shift=3.0,
|
| 935 |
)
|
| 936 |
+
|
| 937 |
frame_length = int(duration * 44100 / 512 / 8)
|
| 938 |
if src_latents is not None:
|
| 939 |
frame_length = src_latents.shape[-1]
|
|
|
|
| 944 |
if len(oss_steps) > 0:
|
| 945 |
infer_steps = max(oss_steps)
|
| 946 |
scheduler.set_timesteps
|
| 947 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 948 |
+
scheduler,
|
| 949 |
+
num_inference_steps=infer_steps,
|
| 950 |
+
device=device,
|
| 951 |
+
timesteps=None,
|
| 952 |
+
)
|
| 953 |
new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device)
|
| 954 |
for idx in range(len(oss_steps)):
|
| 955 |
+
new_timesteps[idx] = timesteps[oss_steps[idx] - 1]
|
| 956 |
num_inference_steps = len(oss_steps)
|
| 957 |
sigmas = (new_timesteps / 1000).float().cpu().numpy()
|
| 958 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 959 |
+
scheduler,
|
| 960 |
+
num_inference_steps=num_inference_steps,
|
| 961 |
+
device=device,
|
| 962 |
+
sigmas=sigmas,
|
| 963 |
+
)
|
| 964 |
+
logger.info(
|
| 965 |
+
f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}"
|
| 966 |
+
)
|
| 967 |
else:
|
| 968 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 969 |
+
scheduler,
|
| 970 |
+
num_inference_steps=infer_steps,
|
| 971 |
+
device=device,
|
| 972 |
+
timesteps=None,
|
| 973 |
+
)
|
| 974 |
+
|
| 975 |
+
target_latents = randn_tensor(
|
| 976 |
+
shape=(bsz, 8, 16, frame_length),
|
| 977 |
+
generator=random_generators,
|
| 978 |
+
device=device,
|
| 979 |
+
dtype=dtype,
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
is_repaint = False
|
| 983 |
+
is_extend = False
|
| 984 |
if add_retake_noise:
|
| 985 |
n_min = int(infer_steps * (1 - retake_variance))
|
| 986 |
+
retake_variance = (
|
| 987 |
+
torch.tensor(retake_variance * math.pi / 2).to(device).to(dtype)
|
| 988 |
+
)
|
| 989 |
+
retake_latents = randn_tensor(
|
| 990 |
+
shape=(bsz, 8, 16, frame_length),
|
| 991 |
+
generator=retake_random_generators,
|
| 992 |
+
device=device,
|
| 993 |
+
dtype=dtype,
|
| 994 |
+
)
|
| 995 |
repaint_start_frame = int(repaint_start * 44100 / 512 / 8)
|
| 996 |
repaint_end_frame = int(repaint_end * 44100 / 512 / 8)
|
| 997 |
x0 = src_latents
|
| 998 |
# retake
|
| 999 |
+
is_repaint = repaint_end_frame - repaint_start_frame != frame_length
|
| 1000 |
+
|
| 1001 |
is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length)
|
| 1002 |
if is_extend:
|
| 1003 |
is_repaint = True
|
|
|
|
| 1005 |
# TODO: train a mask aware repainting controlnet
|
| 1006 |
# to make sure mean = 0, std = 1
|
| 1007 |
if not is_repaint:
|
| 1008 |
+
target_latents = (
|
| 1009 |
+
torch.cos(retake_variance) * target_latents
|
| 1010 |
+
+ torch.sin(retake_variance) * retake_latents
|
| 1011 |
+
)
|
| 1012 |
elif not is_extend:
|
| 1013 |
+
# if repaint_end_frame
|
| 1014 |
+
repaint_mask = torch.zeros(
|
| 1015 |
+
(bsz, 8, 16, frame_length), device=device, dtype=dtype
|
| 1016 |
+
)
|
| 1017 |
repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0
|
| 1018 |
+
repaint_noise = (
|
| 1019 |
+
torch.cos(retake_variance) * target_latents
|
| 1020 |
+
+ torch.sin(retake_variance) * retake_latents
|
| 1021 |
+
)
|
| 1022 |
+
repaint_noise = torch.where(
|
| 1023 |
+
repaint_mask == 1.0, repaint_noise, target_latents
|
| 1024 |
+
)
|
| 1025 |
zt_edit = x0.clone()
|
| 1026 |
z0 = repaint_noise
|
| 1027 |
elif is_extend:
|
|
|
|
| 1037 |
if repaint_start_frame < 0:
|
| 1038 |
left_pad_frame_length = abs(repaint_start_frame)
|
| 1039 |
frame_length = left_pad_frame_length + gt_latents.shape[-1]
|
| 1040 |
+
extend_gt_latents = torch.nn.functional.pad(
|
| 1041 |
+
gt_latents, (left_pad_frame_length, 0), "constant", 0
|
| 1042 |
+
)
|
| 1043 |
if frame_length > max_infer_fame_length:
|
| 1044 |
right_trim_length = frame_length - max_infer_fame_length
|
| 1045 |
+
extend_gt_latents = extend_gt_latents[
|
| 1046 |
+
:, :, :, :max_infer_fame_length
|
| 1047 |
+
]
|
| 1048 |
+
to_right_pad_gt_latents = extend_gt_latents[
|
| 1049 |
+
:, :, :, -right_trim_length:
|
| 1050 |
+
]
|
| 1051 |
frame_length = max_infer_fame_length
|
| 1052 |
repaint_start_frame = 0
|
| 1053 |
gt_latents = extend_gt_latents
|
| 1054 |
+
|
| 1055 |
if repaint_end_frame > src_latents_length:
|
| 1056 |
right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1]
|
| 1057 |
frame_length = gt_latents.shape[-1] + right_pad_frame_length
|
| 1058 |
+
extend_gt_latents = torch.nn.functional.pad(
|
| 1059 |
+
gt_latents, (0, right_pad_frame_length), "constant", 0
|
| 1060 |
+
)
|
| 1061 |
if frame_length > max_infer_fame_length:
|
| 1062 |
left_trim_length = frame_length - max_infer_fame_length
|
| 1063 |
+
extend_gt_latents = extend_gt_latents[
|
| 1064 |
+
:, :, :, -max_infer_fame_length:
|
| 1065 |
+
]
|
| 1066 |
+
to_left_pad_gt_latents = extend_gt_latents[
|
| 1067 |
+
:, :, :, :left_trim_length
|
| 1068 |
+
]
|
| 1069 |
frame_length = max_infer_fame_length
|
| 1070 |
repaint_end_frame = frame_length
|
| 1071 |
gt_latents = extend_gt_latents
|
| 1072 |
|
| 1073 |
+
repaint_mask = torch.zeros(
|
| 1074 |
+
(bsz, 8, 16, frame_length), device=device, dtype=dtype
|
| 1075 |
+
)
|
| 1076 |
if left_pad_frame_length > 0:
|
| 1077 |
+
repaint_mask[:, :, :, :left_pad_frame_length] = 1.0
|
| 1078 |
if right_pad_frame_length > 0:
|
| 1079 |
+
repaint_mask[:, :, :, -right_pad_frame_length:] = 1.0
|
| 1080 |
x0 = gt_latents
|
| 1081 |
padd_list = []
|
| 1082 |
if left_pad_frame_length > 0:
|
| 1083 |
padd_list.append(retake_latents[:, :, :, :left_pad_frame_length])
|
| 1084 |
+
padd_list.append(
|
| 1085 |
+
target_latents[
|
| 1086 |
+
:,
|
| 1087 |
+
:,
|
| 1088 |
+
:,
|
| 1089 |
+
left_trim_length : target_latents.shape[-1] - right_trim_length,
|
| 1090 |
+
]
|
| 1091 |
+
)
|
| 1092 |
if right_pad_frame_length > 0:
|
| 1093 |
padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:])
|
| 1094 |
target_latents = torch.cat(padd_list, dim=-1)
|
| 1095 |
+
assert (
|
| 1096 |
+
target_latents.shape[-1] == x0.shape[-1]
|
| 1097 |
+
), f"{target_latents.shape=} {x0.shape=}"
|
| 1098 |
zt_edit = x0.clone()
|
| 1099 |
z0 = target_latents
|
| 1100 |
|
| 1101 |
init_timestep = 1000
|
| 1102 |
if audio2audio_enable and ref_latents is not None:
|
| 1103 |
+
target_latents, init_timestep = self.add_latents_noise(
|
| 1104 |
+
gt_latents=ref_latents,
|
| 1105 |
+
variance=(1 - ref_audio_strength),
|
| 1106 |
+
noise=target_latents,
|
| 1107 |
+
scheduler=scheduler,
|
| 1108 |
+
)
|
| 1109 |
|
| 1110 |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
|
| 1111 |
+
|
| 1112 |
# guidance interval
|
| 1113 |
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
|
| 1114 |
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
|
| 1115 |
+
logger.info(
|
| 1116 |
+
f"start_idx: {start_idx}, end_idx: {end_idx}, num_inference_steps: {num_inference_steps}"
|
| 1117 |
+
)
|
| 1118 |
|
| 1119 |
momentum_buffer = MomentumBuffer()
|
| 1120 |
|
| 1121 |
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
|
| 1122 |
handlers = []
|
| 1123 |
+
|
| 1124 |
def hook(module, input, output):
|
| 1125 |
output[:] *= tau
|
| 1126 |
return output
|
| 1127 |
+
|
| 1128 |
for i in range(l_min, l_max):
|
| 1129 |
+
handler = self.ace_step_transformer.lyric_encoder.encoders[
|
| 1130 |
+
i
|
| 1131 |
+
].self_attn.linear_q.register_forward_hook(hook)
|
| 1132 |
handlers.append(handler)
|
| 1133 |
+
|
| 1134 |
+
encoder_hidden_states, encoder_hidden_mask = (
|
| 1135 |
+
self.ace_step_transformer.encode(**inputs)
|
| 1136 |
+
)
|
| 1137 |
+
|
| 1138 |
for hook in handlers:
|
| 1139 |
hook.remove()
|
| 1140 |
+
|
| 1141 |
return encoder_hidden_states
|
| 1142 |
|
| 1143 |
# P(speaker, text, lyric)
|
|
|
|
| 1154 |
encoder_hidden_states_null = forward_encoder_with_temperature(
|
| 1155 |
self,
|
| 1156 |
inputs={
|
| 1157 |
+
"encoder_text_hidden_states": (
|
| 1158 |
+
encoder_text_hidden_states_null
|
| 1159 |
+
if encoder_text_hidden_states_null is not None
|
| 1160 |
+
else torch.zeros_like(encoder_text_hidden_states)
|
| 1161 |
+
),
|
| 1162 |
"text_attention_mask": text_attention_mask,
|
| 1163 |
"speaker_embeds": torch.zeros_like(speaker_embds),
|
| 1164 |
"lyric_token_idx": lyric_token_ids,
|
| 1165 |
"lyric_mask": lyric_mask,
|
| 1166 |
+
},
|
| 1167 |
)
|
| 1168 |
else:
|
| 1169 |
# P(null_speaker, null_text, null_lyric)
|
|
|
|
| 1174 |
torch.zeros_like(lyric_token_ids),
|
| 1175 |
lyric_mask,
|
| 1176 |
)
|
| 1177 |
+
|
| 1178 |
encoder_hidden_states_no_lyric = None
|
| 1179 |
if do_double_condition_guidance:
|
| 1180 |
# P(null_speaker, text, lyric_weaker)
|
|
|
|
| 1187 |
"speaker_embeds": torch.zeros_like(speaker_embds),
|
| 1188 |
"lyric_token_idx": lyric_token_ids,
|
| 1189 |
"lyric_mask": lyric_mask,
|
| 1190 |
+
},
|
| 1191 |
)
|
| 1192 |
# P(null_speaker, text, no_lyric)
|
| 1193 |
else:
|
|
|
|
| 1199 |
lyric_mask,
|
| 1200 |
)
|
| 1201 |
|
| 1202 |
+
def forward_diffusion_with_temperature(
|
| 1203 |
+
self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20
|
| 1204 |
+
):
|
| 1205 |
handlers = []
|
| 1206 |
+
|
| 1207 |
def hook(module, input, output):
|
| 1208 |
output[:] *= tau
|
| 1209 |
return output
|
| 1210 |
+
|
| 1211 |
for i in range(l_min, l_max):
|
| 1212 |
+
handler = self.ace_step_transformer.transformer_blocks[
|
| 1213 |
+
i
|
| 1214 |
+
].attn.to_q.register_forward_hook(hook)
|
| 1215 |
handlers.append(handler)
|
| 1216 |
+
handler = self.ace_step_transformer.transformer_blocks[
|
| 1217 |
+
i
|
| 1218 |
+
].cross_attn.to_q.register_forward_hook(hook)
|
| 1219 |
handlers.append(handler)
|
| 1220 |
|
| 1221 |
+
sample = self.ace_step_transformer.decode(
|
| 1222 |
+
hidden_states=hidden_states, timestep=timestep, **inputs
|
| 1223 |
+
).sample
|
| 1224 |
+
|
| 1225 |
for hook in handlers:
|
| 1226 |
hook.remove()
|
| 1227 |
+
|
| 1228 |
return sample
|
| 1229 |
+
|
| 1230 |
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
|
| 1231 |
|
| 1232 |
if t > init_timestep:
|
|
|
|
| 1249 |
# compute current guidance scale
|
| 1250 |
if guidance_interval_decay > 0:
|
| 1251 |
# Linearly interpolate to calculate the current guidance scale
|
| 1252 |
+
progress = (i - start_idx) / (
|
| 1253 |
+
end_idx - start_idx - 1
|
| 1254 |
+
) # ๅฝไธๅๅฐ[0,1]
|
| 1255 |
+
current_guidance_scale = (
|
| 1256 |
+
guidance_scale
|
| 1257 |
+
- (guidance_scale - min_guidance_scale)
|
| 1258 |
+
* progress
|
| 1259 |
+
* guidance_interval_decay
|
| 1260 |
+
)
|
| 1261 |
else:
|
| 1262 |
current_guidance_scale = guidance_scale
|
| 1263 |
|
|
|
|
| 1275 |
).sample
|
| 1276 |
|
| 1277 |
noise_pred_with_only_text_cond = None
|
| 1278 |
+
if (
|
| 1279 |
+
do_double_condition_guidance
|
| 1280 |
+
and encoder_hidden_states_no_lyric is not None
|
| 1281 |
+
):
|
| 1282 |
noise_pred_with_only_text_cond = self.ace_step_transformer.decode(
|
| 1283 |
hidden_states=latent_model_input,
|
| 1284 |
attention_mask=attention_mask,
|
|
|
|
| 1310 |
timestep=timestep,
|
| 1311 |
).sample
|
| 1312 |
|
| 1313 |
+
if (
|
| 1314 |
+
do_double_condition_guidance
|
| 1315 |
+
and noise_pred_with_only_text_cond is not None
|
| 1316 |
+
):
|
| 1317 |
noise_pred = cfg_double_condition_forward(
|
| 1318 |
cond_output=noise_pred_with_cond,
|
| 1319 |
uncond_output=noise_pred_uncond,
|
|
|
|
| 1342 |
guidance_scale=current_guidance_scale,
|
| 1343 |
i=i,
|
| 1344 |
zero_steps=zero_steps,
|
| 1345 |
+
use_zero_init=use_zero_init,
|
| 1346 |
)
|
| 1347 |
else:
|
| 1348 |
latent_model_input = latents
|
|
|
|
| 1357 |
).sample
|
| 1358 |
|
| 1359 |
if is_repaint and i >= n_min:
|
| 1360 |
+
t_i = t / 1000
|
| 1361 |
+
if i + 1 < len(timesteps):
|
| 1362 |
+
t_im1 = (timesteps[i + 1]) / 1000
|
| 1363 |
else:
|
| 1364 |
t_im1 = torch.zeros_like(t_i).to(t_i.device)
|
| 1365 |
dtype = noise_pred.dtype
|
|
|
|
| 1368 |
prev_sample = prev_sample.to(dtype)
|
| 1369 |
target_latents = prev_sample
|
| 1370 |
zt_src = (1 - t_im1) * x0 + (t_im1) * z0
|
| 1371 |
+
target_latents = torch.where(
|
| 1372 |
+
repaint_mask == 1.0, target_latents, zt_src
|
| 1373 |
+
)
|
| 1374 |
else:
|
| 1375 |
+
target_latents = scheduler.step(
|
| 1376 |
+
model_output=noise_pred,
|
| 1377 |
+
timestep=t,
|
| 1378 |
+
sample=target_latents,
|
| 1379 |
+
return_dict=False,
|
| 1380 |
+
omega=omega_scale,
|
| 1381 |
+
)[0]
|
| 1382 |
|
| 1383 |
if is_extend:
|
| 1384 |
if to_right_pad_gt_latents is not None:
|
| 1385 |
+
target_latents = torch.cat(
|
| 1386 |
+
[target_latents, to_right_pad_gt_latents], dim=-1
|
| 1387 |
+
)
|
| 1388 |
if to_left_pad_gt_latents is not None:
|
| 1389 |
+
target_latents = torch.cat(
|
| 1390 |
+
[to_right_pad_gt_latents, target_latents], dim=0
|
| 1391 |
+
)
|
| 1392 |
return target_latents
|
| 1393 |
|
| 1394 |
+
def latents2audio(
|
| 1395 |
+
self,
|
| 1396 |
+
latents,
|
| 1397 |
+
target_wav_duration_second=30,
|
| 1398 |
+
sample_rate=48000,
|
| 1399 |
+
save_path=None,
|
| 1400 |
+
format="mp3",
|
| 1401 |
+
):
|
| 1402 |
output_audio_paths = []
|
| 1403 |
bs = latents.shape[0]
|
| 1404 |
audio_lengths = [target_wav_duration_second * sample_rate] * bs
|
|
|
|
| 1407 |
_, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate)
|
| 1408 |
pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs]
|
| 1409 |
for i in tqdm(range(bs)):
|
| 1410 |
+
output_audio_path = self.save_wav_file(
|
| 1411 |
+
pred_wavs[i], i, sample_rate=sample_rate
|
| 1412 |
+
)
|
| 1413 |
output_audio_paths.append(output_audio_path)
|
| 1414 |
return output_audio_paths
|
| 1415 |
|
| 1416 |
+
def save_wav_file(
|
| 1417 |
+
self, target_wav, idx, save_path=None, sample_rate=48000, format="mp3"
|
| 1418 |
+
):
|
| 1419 |
if save_path is None:
|
| 1420 |
logger.warning("save_path is None, using default path ./outputs/")
|
| 1421 |
base_path = f"./outputs"
|
|
|
|
| 1424 |
base_path = save_path
|
| 1425 |
ensure_directory_exists(base_path)
|
| 1426 |
|
| 1427 |
+
output_path_flac = (
|
| 1428 |
+
f"{base_path}/output_{time.strftime('%Y%m%d%H%M%S')}_{idx}.{format}"
|
| 1429 |
+
)
|
| 1430 |
target_wav = target_wav.float()
|
| 1431 |
+
torchaudio.save(
|
| 1432 |
+
output_path_flac,
|
| 1433 |
+
target_wav,
|
| 1434 |
+
sample_rate=sample_rate,
|
| 1435 |
+
format=format,
|
| 1436 |
+
compression=torio.io.CodecConfig(bit_rate=320000),
|
| 1437 |
+
)
|
| 1438 |
return output_path_flac
|
| 1439 |
|
| 1440 |
def infer_latents(self, input_audio_path):
|
|
|
|
| 1460 |
omega_scale: int = 10.0,
|
| 1461 |
manual_seeds: list = None,
|
| 1462 |
guidance_interval: float = 0.5,
|
| 1463 |
+
guidance_interval_decay: float = 0.0,
|
| 1464 |
min_guidance_scale: float = 3.0,
|
| 1465 |
use_erg_tag: bool = True,
|
| 1466 |
use_erg_lyric: bool = True,
|
|
|
|
| 1503 |
start_time = time.time()
|
| 1504 |
|
| 1505 |
random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds)
|
| 1506 |
+
retake_random_generators, actual_retake_seeds = self.set_seeds(
|
| 1507 |
+
batch_size, retake_seeds
|
| 1508 |
+
)
|
| 1509 |
|
| 1510 |
if isinstance(oss_steps, str) and len(oss_steps) > 0:
|
| 1511 |
oss_steps = list(map(int, oss_steps.split(",")))
|
| 1512 |
else:
|
| 1513 |
oss_steps = []
|
| 1514 |
+
|
| 1515 |
texts = [prompt]
|
| 1516 |
+
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(
|
| 1517 |
+
texts, self.device
|
| 1518 |
+
)
|
| 1519 |
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
|
| 1520 |
text_attention_mask = text_attention_mask.repeat(batch_size, 1)
|
| 1521 |
|
| 1522 |
encoder_text_hidden_states_null = None
|
| 1523 |
if use_erg_tag:
|
| 1524 |
+
encoder_text_hidden_states_null = self.get_text_embeddings_null(
|
| 1525 |
+
texts, self.device
|
| 1526 |
+
)
|
| 1527 |
+
encoder_text_hidden_states_null = encoder_text_hidden_states_null.repeat(
|
| 1528 |
+
batch_size, 1, 1
|
| 1529 |
+
)
|
| 1530 |
|
| 1531 |
# not support for released checkpoint
|
| 1532 |
speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype)
|
|
|
|
| 1537 |
if len(lyrics) > 0:
|
| 1538 |
lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug)
|
| 1539 |
lyric_mask = [1] * len(lyric_token_idx)
|
| 1540 |
+
lyric_token_idx = (
|
| 1541 |
+
torch.tensor(lyric_token_idx)
|
| 1542 |
+
.unsqueeze(0)
|
| 1543 |
+
.to(self.device)
|
| 1544 |
+
.repeat(batch_size, 1)
|
| 1545 |
+
)
|
| 1546 |
+
lyric_mask = (
|
| 1547 |
+
torch.tensor(lyric_mask)
|
| 1548 |
+
.unsqueeze(0)
|
| 1549 |
+
.to(self.device)
|
| 1550 |
+
.repeat(batch_size, 1)
|
| 1551 |
+
)
|
| 1552 |
|
| 1553 |
if audio_duration <= 0:
|
| 1554 |
audio_duration = random.uniform(30.0, 240.0)
|
|
|
|
| 1563 |
if task == "retake":
|
| 1564 |
repaint_start = 0
|
| 1565 |
repaint_end = audio_duration
|
| 1566 |
+
|
| 1567 |
src_latents = None
|
| 1568 |
if src_audio_path is not None:
|
| 1569 |
+
assert src_audio_path is not None and task in (
|
| 1570 |
+
"repaint",
|
| 1571 |
+
"edit",
|
| 1572 |
+
"extend",
|
| 1573 |
+
), "src_audio_path is required for retake/repaint/extend task"
|
| 1574 |
+
assert os.path.exists(
|
| 1575 |
+
src_audio_path
|
| 1576 |
+
), f"src_audio_path {src_audio_path} does not exist"
|
| 1577 |
src_latents = self.infer_latents(src_audio_path)
|
| 1578 |
|
| 1579 |
ref_latents = None
|
| 1580 |
if ref_audio_input is not None and audio2audio_enable:
|
| 1581 |
+
assert (
|
| 1582 |
+
ref_audio_input is not None
|
| 1583 |
+
), "ref_audio_input is required for audio2audio task"
|
| 1584 |
assert os.path.exists(
|
| 1585 |
ref_audio_input
|
| 1586 |
), f"ref_audio_input {ref_audio_input} does not exist"
|
|
|
|
| 1588 |
|
| 1589 |
if task == "edit":
|
| 1590 |
texts = [edit_target_prompt]
|
| 1591 |
+
target_encoder_text_hidden_states, target_text_attention_mask = (
|
| 1592 |
+
self.get_text_embeddings(texts, self.device)
|
| 1593 |
+
)
|
| 1594 |
+
target_encoder_text_hidden_states = (
|
| 1595 |
+
target_encoder_text_hidden_states.repeat(batch_size, 1, 1)
|
| 1596 |
+
)
|
| 1597 |
+
target_text_attention_mask = target_text_attention_mask.repeat(
|
| 1598 |
+
batch_size, 1
|
| 1599 |
+
)
|
| 1600 |
|
| 1601 |
+
target_lyric_token_idx = (
|
| 1602 |
+
torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
|
| 1603 |
+
)
|
| 1604 |
+
target_lyric_mask = (
|
| 1605 |
+
torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
|
| 1606 |
+
)
|
| 1607 |
if len(edit_target_lyrics) > 0:
|
| 1608 |
+
target_lyric_token_idx = self.tokenize_lyrics(
|
| 1609 |
+
edit_target_lyrics, debug=True
|
| 1610 |
+
)
|
| 1611 |
target_lyric_mask = [1] * len(target_lyric_token_idx)
|
| 1612 |
+
target_lyric_token_idx = (
|
| 1613 |
+
torch.tensor(target_lyric_token_idx)
|
| 1614 |
+
.unsqueeze(0)
|
| 1615 |
+
.to(self.device)
|
| 1616 |
+
.repeat(batch_size, 1)
|
| 1617 |
+
)
|
| 1618 |
+
target_lyric_mask = (
|
| 1619 |
+
torch.tensor(target_lyric_mask)
|
| 1620 |
+
.unsqueeze(0)
|
| 1621 |
+
.to(self.device)
|
| 1622 |
+
.repeat(batch_size, 1)
|
| 1623 |
+
)
|
| 1624 |
|
| 1625 |
target_speaker_embeds = speaker_embeds.clone()
|
| 1626 |
|
|
|
|
| 1636 |
target_lyric_token_ids=target_lyric_token_idx,
|
| 1637 |
target_lyric_mask=target_lyric_mask,
|
| 1638 |
src_latents=src_latents,
|
| 1639 |
+
random_generators=retake_random_generators, # more diversity
|
| 1640 |
infer_steps=infer_step,
|
| 1641 |
guidance_scale=guidance_scale,
|
| 1642 |
n_min=edit_n_min,
|
|
|
|
| 1724 |
"repaint_end": repaint_end,
|
| 1725 |
"edit_n_min": edit_n_min,
|
| 1726 |
"edit_n_max": edit_n_max,
|
| 1727 |
+
"edit_n_avg": edit_n_avg,
|
| 1728 |
"src_audio_path": src_audio_path,
|
| 1729 |
"edit_target_prompt": edit_target_prompt,
|
| 1730 |
"edit_target_lyrics": edit_target_lyrics,
|
|
|
|
| 1734 |
}
|
| 1735 |
# save input_params_json
|
| 1736 |
for output_audio_path in output_paths:
|
| 1737 |
+
input_params_json_save_path = output_audio_path.replace(
|
| 1738 |
+
f".{format}", "_input_params.json"
|
| 1739 |
+
)
|
| 1740 |
input_params_json["audio_path"] = output_audio_path
|
| 1741 |
with open(input_params_json_save_path, "w", encoding="utf-8") as f:
|
| 1742 |
json.dump(input_params_json, f, indent=4, ensure_ascii=False)
|