Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,8 @@ torch.set_num_threads(2)
|
|
| 14 |
|
| 15 |
def min_p_sampling(logits, pbase=0.1):
|
| 16 |
"""
|
| 17 |
-
Perform min-p sampling on the logits.
|
|
|
|
| 18 |
|
| 19 |
Args:
|
| 20 |
logits (torch.Tensor): 1D tensor of logits for the next token.
|
|
@@ -47,6 +48,96 @@ def min_p_sampling(logits, pbase=0.1):
|
|
| 47 |
return sampled_index.item()
|
| 48 |
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def generate_completion(prompt, strategy, params):
|
| 51 |
"""
|
| 52 |
Generate a complete answer using model.generate with specified parameters.
|
|
@@ -59,12 +150,12 @@ def generate_completion(prompt, strategy, params):
|
|
| 59 |
|
| 60 |
# Generate the output.
|
| 61 |
output_ids = model.generate(
|
| 62 |
-
input_ids, attention_mask=attention_mask, max_length=
|
| 63 |
)
|
| 64 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 65 |
|
| 66 |
|
| 67 |
-
def generate_min_p_completion(prompt, pbase=0.1, max_length=
|
| 68 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 69 |
past = None
|
| 70 |
with torch.no_grad():
|
|
@@ -94,7 +185,7 @@ def generate_all(prompt):
|
|
| 94 |
"Greedy": {"type": "default", "params": {"do_sample": False}},
|
| 95 |
"Top-k Sampling": {
|
| 96 |
"type": "default",
|
| 97 |
-
"params": {"do_sample": True, "top_k":
|
| 98 |
},
|
| 99 |
"Top-p Sampling": {
|
| 100 |
"type": "default",
|
|
@@ -113,6 +204,14 @@ def generate_all(prompt):
|
|
| 113 |
"params": {"do_sample": True, "epsilon_cutoff": 0.2},
|
| 114 |
},
|
| 115 |
"Min-p Sampling": {"type": "min_p", "pbase": 0.1},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
}
|
| 117 |
|
| 118 |
# Define the order for display.
|
|
@@ -124,6 +223,8 @@ def generate_all(prompt):
|
|
| 124 |
"Min-p Sampling",
|
| 125 |
"Eta Sampling",
|
| 126 |
"Epsilon Sampling",
|
|
|
|
|
|
|
| 127 |
]
|
| 128 |
results = {method: None for method in methods}
|
| 129 |
|
|
@@ -142,6 +243,11 @@ def generate_all(prompt):
|
|
| 142 |
future = executor.submit(
|
| 143 |
generate_min_p_completion, prompt, info["pbase"]
|
| 144 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
future_to_method[future] = method
|
| 146 |
|
| 147 |
# As each future completes, update its result and yield the current state.
|
|
@@ -169,9 +275,15 @@ interface = gr.Interface(
|
|
| 169 |
gr.Textbox(label="Top-k Sampling"),
|
| 170 |
gr.Textbox(label="Top-p Sampling"),
|
| 171 |
gr.Textbox(label="Beam Search"),
|
| 172 |
-
gr.Textbox(label="Min-p Sampling"),
|
| 173 |
gr.Textbox(label="Eta Sampling"),
|
| 174 |
gr.Textbox(label="Epsilon Sampling"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
],
|
| 176 |
title="Decoding Methods Comparison",
|
| 177 |
description="Each decoding method's final answer is printed as soon as it is done. Model used: GPT-2.",
|
|
|
|
| 14 |
|
| 15 |
def min_p_sampling(logits, pbase=0.1):
|
| 16 |
"""
|
| 17 |
+
Perform min-p sampling on the logits. As described in
|
| 18 |
+
https://arxiv.org/abs/2407.01082
|
| 19 |
|
| 20 |
Args:
|
| 21 |
logits (torch.Tensor): 1D tensor of logits for the next token.
|
|
|
|
| 48 |
return sampled_index.item()
|
| 49 |
|
| 50 |
|
| 51 |
+
def generate_laconic_completion(prompt: str, n: int = 5, max_length: int = 100):
|
| 52 |
+
# generate n completions greedily and return the shortest one
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
# Encode the prompt and get the attention mask.
|
| 55 |
+
encoded = tokenizer(prompt, return_tensors="pt")
|
| 56 |
+
input_ids = encoded["input_ids"]
|
| 57 |
+
attention_mask = encoded["attention_mask"]
|
| 58 |
+
|
| 59 |
+
# Generate the output.
|
| 60 |
+
outputs = model.generate(
|
| 61 |
+
input_ids,
|
| 62 |
+
attention_mask=attention_mask,
|
| 63 |
+
max_length=max_length,
|
| 64 |
+
num_return_sequences=n,
|
| 65 |
+
do_sample=True,
|
| 66 |
+
)
|
| 67 |
+
completions = [
|
| 68 |
+
tokenizer.decode(output, skip_special_tokens=True) for output in outputs
|
| 69 |
+
]
|
| 70 |
+
return min(completions, key=len)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def generate_with_confidence(input_ids, max_length):
|
| 74 |
+
"""
|
| 75 |
+
Generate a sequence using greedy decoding while returning the scores.
|
| 76 |
+
"""
|
| 77 |
+
outputs = model.generate(
|
| 78 |
+
input_ids,
|
| 79 |
+
max_length=max_length,
|
| 80 |
+
do_sample=False,
|
| 81 |
+
output_scores=True,
|
| 82 |
+
return_dict_in_generate=True,
|
| 83 |
+
)
|
| 84 |
+
return outputs
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def compute_answer_confidence(outputs):
|
| 88 |
+
"""
|
| 89 |
+
Compute the answer confidence over the generated tokens.
|
| 90 |
+
For each generated token, compute the difference between the top-1 and top-2 logits.
|
| 91 |
+
Returns the average difference.
|
| 92 |
+
"""
|
| 93 |
+
diffs = []
|
| 94 |
+
for score in outputs.scores:
|
| 95 |
+
# Get top-2 logit values
|
| 96 |
+
top2 = torch.topk(score[0], 2)
|
| 97 |
+
diff = top2.values[0] - top2.values[1]
|
| 98 |
+
diffs.append(diff.item())
|
| 99 |
+
|
| 100 |
+
return sum(diffs) / len(diffs) if diffs else 0.0
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def cot_decoding(prompt, k=5, max_length=100):
|
| 104 |
+
"""
|
| 105 |
+
Perform Chain-of-Thought (CoT) decoding by exploring top-k alternative paths.
|
| 106 |
+
"""
|
| 107 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 108 |
+
|
| 109 |
+
# Get logits for the next token
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
outputs = model(input_ids)
|
| 112 |
+
logits = outputs.logits[0, -1, :]
|
| 113 |
+
|
| 114 |
+
# Get top-k candidate tokens
|
| 115 |
+
topk = torch.topk(logits, k)
|
| 116 |
+
candidate_tokens = topk.indices
|
| 117 |
+
|
| 118 |
+
paths = []
|
| 119 |
+
for token in candidate_tokens:
|
| 120 |
+
# Append the candidate token to the prompt
|
| 121 |
+
new_input_ids = torch.cat([input_ids, token.view(1, 1)], dim=1)
|
| 122 |
+
|
| 123 |
+
# Generate a full sequence with output scores
|
| 124 |
+
gen_outputs = generate_with_confidence(
|
| 125 |
+
new_input_ids, max_length=new_input_ids.shape[1] + max_length
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Decode the generated sequence
|
| 129 |
+
generated_text = tokenizer.decode(
|
| 130 |
+
gen_outputs.sequences[0], skip_special_tokens=True
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Compute answer confidence
|
| 134 |
+
confidence = compute_answer_confidence(gen_outputs)
|
| 135 |
+
|
| 136 |
+
paths.append({"text": generated_text, "confidence": confidence})
|
| 137 |
+
|
| 138 |
+
return max(paths, key=lambda x: x["confidence"])["text"]
|
| 139 |
+
|
| 140 |
+
|
| 141 |
def generate_completion(prompt, strategy, params):
|
| 142 |
"""
|
| 143 |
Generate a complete answer using model.generate with specified parameters.
|
|
|
|
| 150 |
|
| 151 |
# Generate the output.
|
| 152 |
output_ids = model.generate(
|
| 153 |
+
input_ids, attention_mask=attention_mask, max_length=100, **params
|
| 154 |
)
|
| 155 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 156 |
|
| 157 |
|
| 158 |
+
def generate_min_p_completion(prompt, pbase=0.1, max_length=100):
|
| 159 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 160 |
past = None
|
| 161 |
with torch.no_grad():
|
|
|
|
| 185 |
"Greedy": {"type": "default", "params": {"do_sample": False}},
|
| 186 |
"Top-k Sampling": {
|
| 187 |
"type": "default",
|
| 188 |
+
"params": {"do_sample": True, "top_k": 100},
|
| 189 |
},
|
| 190 |
"Top-p Sampling": {
|
| 191 |
"type": "default",
|
|
|
|
| 204 |
"params": {"do_sample": True, "epsilon_cutoff": 0.2},
|
| 205 |
},
|
| 206 |
"Min-p Sampling": {"type": "min_p", "pbase": 0.1},
|
| 207 |
+
"laconic": {
|
| 208 |
+
"type": "default",
|
| 209 |
+
"params": {"do_sample": True, "num_return_sequences": 5},
|
| 210 |
+
},
|
| 211 |
+
"COT Decoding": {
|
| 212 |
+
"type": "cot_decoding",
|
| 213 |
+
"params": {"k": 5, "max_length": 100},
|
| 214 |
+
},
|
| 215 |
}
|
| 216 |
|
| 217 |
# Define the order for display.
|
|
|
|
| 223 |
"Min-p Sampling",
|
| 224 |
"Eta Sampling",
|
| 225 |
"Epsilon Sampling",
|
| 226 |
+
"laconic",
|
| 227 |
+
"COT Decoding",
|
| 228 |
]
|
| 229 |
results = {method: None for method in methods}
|
| 230 |
|
|
|
|
| 243 |
future = executor.submit(
|
| 244 |
generate_min_p_completion, prompt, info["pbase"]
|
| 245 |
)
|
| 246 |
+
elif method == "laconic":
|
| 247 |
+
future = executor.submit(generate_laconic_completion, prompt)
|
| 248 |
+
elif method == "COT Decoding":
|
| 249 |
+
future = executor.submit(cot_decoding, prompt, **info["params"])
|
| 250 |
+
|
| 251 |
future_to_method[future] = method
|
| 252 |
|
| 253 |
# As each future completes, update its result and yield the current state.
|
|
|
|
| 275 |
gr.Textbox(label="Top-k Sampling"),
|
| 276 |
gr.Textbox(label="Top-p Sampling"),
|
| 277 |
gr.Textbox(label="Beam Search"),
|
| 278 |
+
gr.Textbox(label="Min-p Sampling (as in https://arxiv.org/abs/2407.01082)"),
|
| 279 |
gr.Textbox(label="Eta Sampling"),
|
| 280 |
gr.Textbox(label="Epsilon Sampling"),
|
| 281 |
+
gr.Textbox(
|
| 282 |
+
label="laconic decoding (by Alex Dimakis, 2025, search for twitter thread)"
|
| 283 |
+
),
|
| 284 |
+
gr.Textbox(
|
| 285 |
+
label="COT Decoding (Chain-of-Thought Reasoning without Prompting, Wang, Zhou, 2024)"
|
| 286 |
+
),
|
| 287 |
],
|
| 288 |
title="Decoding Methods Comparison",
|
| 289 |
description="Each decoding method's final answer is printed as soon as it is done. Model used: GPT-2.",
|