Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,42 +1,64 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
|
|
|
|
| 4 |
model_id = "Writer/Palmyra-Med-70B-32k"
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
model =
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
attn_implementation="flash_attention_2",
|
| 13 |
-
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
"role": "system",
|
| 18 |
-
"content": "You are a highly knowledgeable and experienced expert in the healthcare and biomedical field, possessing extensive medical knowledge and practical expertise.",
|
| 19 |
-
},
|
| 20 |
-
{
|
| 21 |
-
"role": "user",
|
| 22 |
-
"content": "Does danzhi Xiaoyao San ameliorate depressive-like behavior by shifting toward serotonin via the downregulation of hippocampal indoleamine 2,3-dioxygenase?",
|
| 23 |
-
},
|
| 24 |
-
]
|
| 25 |
-
|
| 26 |
-
input_ids = tokenizer.apply_chat_template(
|
| 27 |
-
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
| 28 |
)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
output_text = tokenizer.decode(output_id[0][input_ids.shape[1]
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
+
# Define the model and tokenizer
|
| 6 |
model_id = "Writer/Palmyra-Med-70B-32k"
|
| 7 |
|
| 8 |
+
@st.cache(allow_output_mutation=True)
|
| 9 |
+
def load_model():
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
+
model_id,
|
| 13 |
+
torch_dtype=torch.float16,
|
| 14 |
+
device_map="auto",
|
| 15 |
+
attn_implementation="flash_attention_2",
|
| 16 |
+
)
|
| 17 |
+
return tokenizer, model
|
| 18 |
|
| 19 |
+
tokenizer, model = load_model()
|
| 20 |
+
|
| 21 |
+
# Define Streamlit app
|
| 22 |
+
st.title("Medical Query Model")
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
st.write(
|
| 25 |
+
"You are interacting with a highly knowledgeable medical model. Enter your medical question below:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
+
user_input = st.text_area("Your Question")
|
| 29 |
+
|
| 30 |
+
if st.button("Get Response"):
|
| 31 |
+
if user_input:
|
| 32 |
+
# Prepare input for the model
|
| 33 |
+
messages = [
|
| 34 |
+
{
|
| 35 |
+
"role": "system",
|
| 36 |
+
"content": "You are a highly knowledgeable and experienced expert in the healthcare and biomedical field, possessing extensive medical knowledge and practical expertise.",
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"role": "user",
|
| 40 |
+
"content": user_input,
|
| 41 |
+
},
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
input_ids = tokenizer.apply_chat_template(
|
| 45 |
+
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
gen_conf = {
|
| 49 |
+
"max_new_tokens": 256,
|
| 50 |
+
"eos_token_id": [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("")],
|
| 51 |
+
"temperature": 0.0,
|
| 52 |
+
"top_p": 0.9,
|
| 53 |
+
}
|
| 54 |
|
| 55 |
+
# Generate response
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
output_id = model.generate(input_ids, **gen_conf)
|
| 58 |
|
| 59 |
+
output_text = tokenizer.decode(output_id[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 60 |
|
| 61 |
+
st.write("Response:")
|
| 62 |
+
st.write(output_text)
|
| 63 |
+
else:
|
| 64 |
+
st.warning("Please enter a question.")
|