Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,32 +9,133 @@ from functools import lru_cache
|
|
| 9 |
import time
|
| 10 |
import requests
|
| 11 |
from collections import Counter
|
|
|
|
| 12 |
|
| 13 |
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
|
| 14 |
|
| 15 |
-
#
|
| 16 |
st.markdown("""
|
| 17 |
<style>
|
|
|
|
| 18 |
[data-testid="stSidebar"] {
|
| 19 |
-
min-width:
|
| 20 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
}
|
| 22 |
</style>
|
| 23 |
""", unsafe_allow_html=True)
|
| 24 |
-
api = HfApi()
|
| 25 |
|
|
|
|
| 26 |
|
| 27 |
# Cache for API responses
|
| 28 |
@lru_cache(maxsize=1000)
|
| 29 |
def cached_repo_info(repo_id, repo_type):
|
| 30 |
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
|
| 31 |
|
| 32 |
-
|
| 33 |
@lru_cache(maxsize=1000)
|
| 34 |
def cached_list_commits(repo_id, repo_type):
|
| 35 |
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
|
| 36 |
|
| 37 |
-
|
| 38 |
@lru_cache(maxsize=100)
|
| 39 |
def cached_list_items(username, kind):
|
| 40 |
if kind == "model":
|
|
@@ -45,7 +146,6 @@ def cached_list_items(username, kind):
|
|
| 45 |
return list(api.list_spaces(author=username))
|
| 46 |
return []
|
| 47 |
|
| 48 |
-
|
| 49 |
# Function to fetch trending accounts and create stats
|
| 50 |
@lru_cache(maxsize=1)
|
| 51 |
def get_trending_accounts(limit=100):
|
|
@@ -126,7 +226,6 @@ def get_trending_accounts(limit=100):
|
|
| 126 |
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
| 127 |
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
|
| 128 |
|
| 129 |
-
|
| 130 |
# Rate limiting
|
| 131 |
class RateLimiter:
|
| 132 |
def __init__(self, calls_per_second=10):
|
|
@@ -140,10 +239,8 @@ class RateLimiter:
|
|
| 140 |
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
|
| 141 |
self.last_call = time.time()
|
| 142 |
|
| 143 |
-
|
| 144 |
rate_limiter = RateLimiter()
|
| 145 |
|
| 146 |
-
|
| 147 |
# Function to fetch commits for a repository (optimized)
|
| 148 |
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
| 149 |
try:
|
|
@@ -151,7 +248,7 @@ def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
|
| 151 |
# Skip private/gated repos upfront
|
| 152 |
repo_info = cached_repo_info(repo_id, repo_type)
|
| 153 |
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
|
| 154 |
-
return [],
|
| 155 |
|
| 156 |
# Get initial commit date
|
| 157 |
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
|
|
@@ -172,10 +269,9 @@ def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
|
| 172 |
commit_count += 1
|
| 173 |
|
| 174 |
return commit_dates, commit_count
|
| 175 |
-
except Exception:
|
| 176 |
return [], 0
|
| 177 |
|
| 178 |
-
|
| 179 |
# Function to get commit events for a user (optimized)
|
| 180 |
def get_commit_events(username, kind=None, selected_year=None):
|
| 181 |
commit_dates = []
|
|
@@ -210,7 +306,6 @@ def get_commit_events(username, kind=None, selected_year=None):
|
|
| 210 |
df = df.drop_duplicates() # Remove any duplicate dates
|
| 211 |
return df, items_with_type
|
| 212 |
|
| 213 |
-
|
| 214 |
# Calendar heatmap function (optimized)
|
| 215 |
def make_calendar_heatmap(df, title, year):
|
| 216 |
if df.empty:
|
|
@@ -252,7 +347,7 @@ def make_calendar_heatmap(df, title, year):
|
|
| 252 |
norm = BoundaryNorm(bounds, cmap.N)
|
| 253 |
|
| 254 |
# Create plot more efficiently
|
| 255 |
-
fig, ax = plt.subplots(figsize=(12, 1.
|
| 256 |
|
| 257 |
# Convert pivot values to integers to ensure proper color mapping
|
| 258 |
pivot_int = pivot.astype(int)
|
|
@@ -261,15 +356,19 @@ def make_calendar_heatmap(df, title, year):
|
|
| 261 |
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
|
| 262 |
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
|
| 263 |
|
| 264 |
-
ax.set_title(f"{title}", fontsize=
|
| 265 |
ax.set_xlabel("")
|
| 266 |
ax.set_ylabel("")
|
| 267 |
ax.set_xticks(month_positions)
|
| 268 |
-
ax.set_xticklabels(month_labels, fontsize=
|
| 269 |
-
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
st.pyplot(fig)
|
| 271 |
|
| 272 |
-
|
| 273 |
# Function to create a fancy contribution radar chart
|
| 274 |
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
|
| 275 |
# Create radar chart for contribution metrics
|
|
@@ -286,31 +385,41 @@ def create_contribution_radar(username, models_count, spaces_count, datasets_cou
|
|
| 286 |
|
| 287 |
normalized += normalized[:1] # Close the loop
|
| 288 |
|
| 289 |
-
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True})
|
| 290 |
|
| 291 |
-
# Add background grid
|
| 292 |
ax.set_theta_offset(np.pi / 2)
|
| 293 |
ax.set_theta_direction(-1)
|
| 294 |
-
ax.set_thetagrids(np.degrees(angles[:-1]), categories)
|
| 295 |
|
| 296 |
-
#
|
|
|
|
|
|
|
|
|
|
| 297 |
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
|
| 298 |
-
ax.plot(angles, normalized, color='#4CAF50', linewidth=
|
| 299 |
|
| 300 |
-
# Add value labels
|
| 301 |
for i, val in enumerate(values):
|
| 302 |
angle = angles[i]
|
| 303 |
-
x = normalized[i] * np.cos(angle)
|
| 304 |
-
y = normalized[i] * np.sin(angle)
|
| 305 |
-
ax.text(angle, normalized[i] + 0.
|
| 306 |
-
ha='center', va='center', fontsize=
|
| 307 |
-
fontweight='bold')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
-
ax.set_title(f"{username}'s Contribution Profile", fontsize=
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
return fig
|
| 312 |
|
| 313 |
-
|
| 314 |
# Function to create contribution distribution pie chart
|
| 315 |
def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
| 316 |
labels = ['Models', 'Datasets', 'Spaces']
|
|
@@ -323,22 +432,48 @@ def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
|
| 323 |
if not filtered_sizes:
|
| 324 |
return None # No data to show
|
| 325 |
|
| 326 |
-
|
| 327 |
colors = ['#FF9800', '#2196F3', '#4CAF50']
|
| 328 |
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
|
| 329 |
|
| 330 |
-
|
| 331 |
-
explode = [0.05] * len(filtered_sizes) # Explode all slices slightly
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
| 336 |
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
return fig
|
| 340 |
|
| 341 |
-
|
| 342 |
# Function to create monthly activity chart
|
| 343 |
def create_monthly_activity(df, year):
|
| 344 |
if df.empty:
|
|
@@ -346,42 +481,58 @@ def create_monthly_activity(df, year):
|
|
| 346 |
|
| 347 |
# Aggregate by month
|
| 348 |
df['date'] = pd.to_datetime(df['date'])
|
| 349 |
-
df['month'] = df['date'].dt.
|
| 350 |
-
|
| 351 |
-
pd.date_range(start=f'{year}-01-01', end=f'{year}-12-31', freq='MS').strftime('%b')
|
| 352 |
-
).fillna(0)
|
| 353 |
|
| 354 |
-
#
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
# Highlight the month with most activity
|
| 362 |
-
if
|
| 363 |
-
max_idx =
|
| 364 |
bars[max_idx].set_color('#FF5722')
|
|
|
|
|
|
|
| 365 |
|
| 366 |
-
# Add labels and styling
|
| 367 |
-
ax.set_title(f'Monthly Activity in {year}', fontsize=
|
| 368 |
-
ax.set_xlabel('Month', fontsize=
|
| 369 |
-
ax.set_ylabel('Number of Contributions', fontsize=
|
| 370 |
|
| 371 |
-
# Add value labels on top of bars
|
| 372 |
-
for i, count in enumerate(
|
| 373 |
if count > 0:
|
| 374 |
-
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=
|
| 375 |
|
| 376 |
-
# Add grid for better readability
|
| 377 |
-
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
|
| 379 |
-
plt.xticks(rotation=45)
|
| 380 |
plt.tight_layout()
|
| 381 |
|
| 382 |
return fig
|
| 383 |
|
| 384 |
-
|
| 385 |
# Function to render follower growth simulation
|
| 386 |
def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
| 387 |
# Simulate follower growth based on contribution metrics
|
|
@@ -409,73 +560,137 @@ def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
|
| 409 |
# Ensure end value matches our base_followers estimate
|
| 410 |
followers[-1] = base_followers
|
| 411 |
|
| 412 |
-
# Create the chart
|
| 413 |
-
fig, ax = plt.subplots(figsize=(
|
| 414 |
-
ax.plot(dates, followers, marker='o', linestyle='-', color='#9C27B0', markersize=5)
|
| 415 |
|
| 416 |
-
#
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
ax.set_ylabel("Followers", fontsize=12)
|
| 420 |
|
| 421 |
-
|
| 422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
|
| 424 |
-
# Format date axis
|
| 425 |
-
plt.xticks(rotation=45)
|
| 426 |
plt.tight_layout()
|
| 427 |
|
| 428 |
return fig
|
| 429 |
|
| 430 |
-
|
| 431 |
# Function to create ranking position visualization
|
| 432 |
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
| 433 |
if not (overall_rank or spaces_rank or models_rank):
|
| 434 |
return None
|
| 435 |
|
| 436 |
-
# Create a horizontal bar chart for rankings
|
| 437 |
-
fig, ax = plt.subplots(figsize=(
|
| 438 |
|
| 439 |
categories = []
|
| 440 |
positions = []
|
| 441 |
colors = []
|
|
|
|
| 442 |
|
| 443 |
if overall_rank:
|
| 444 |
categories.append('Overall')
|
| 445 |
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
|
| 446 |
colors.append('#673AB7')
|
|
|
|
| 447 |
|
| 448 |
if spaces_rank:
|
| 449 |
categories.append('Spaces')
|
| 450 |
positions.append(101 - spaces_rank)
|
| 451 |
colors.append('#2196F3')
|
|
|
|
| 452 |
|
| 453 |
if models_rank:
|
| 454 |
categories.append('Models')
|
| 455 |
positions.append(101 - models_rank)
|
| 456 |
colors.append('#FF9800')
|
|
|
|
| 457 |
|
| 458 |
-
# Create horizontal bars
|
| 459 |
-
bars = ax.barh(categories, positions, color=colors, alpha=0.
|
|
|
|
| 460 |
|
| 461 |
-
# Add rank values as text
|
| 462 |
for i, bar in enumerate(bars):
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
-
#
|
| 472 |
-
ax.
|
| 473 |
-
ax.
|
| 474 |
-
|
| 475 |
|
| 476 |
-
#
|
| 477 |
-
ax.
|
| 478 |
-
ax.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
# Invert x-axis to show ranking position more intuitively
|
| 481 |
ax.invert_xaxis()
|
|
@@ -483,30 +698,23 @@ def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
|
| 483 |
plt.tight_layout()
|
| 484 |
return fig
|
| 485 |
|
| 486 |
-
|
| 487 |
-
# Import additional libraries for advanced visualizations
|
| 488 |
-
import numpy as np
|
| 489 |
-
|
| 490 |
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
| 491 |
with st.spinner("Loading trending accounts..."):
|
| 492 |
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
| 493 |
|
| 494 |
# Sidebar
|
| 495 |
with st.sidebar:
|
| 496 |
-
st.
|
| 497 |
|
| 498 |
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
|
| 499 |
tab1, tab2 = st.tabs([
|
| 500 |
-
"Top 100 Overall
|
| 501 |
-
"Top
|
| 502 |
])
|
| 503 |
|
| 504 |
with tab1:
|
| 505 |
# Show combined trending accounts list
|
| 506 |
-
st.
|
| 507 |
-
|
| 508 |
-
# Display the top 100 accounts list
|
| 509 |
-
st.markdown("### Combined Contributors Ranking")
|
| 510 |
|
| 511 |
# Create a data frame for the table
|
| 512 |
if trending_accounts:
|
|
@@ -532,101 +740,68 @@ with st.sidebar:
|
|
| 532 |
ranking_data_overall,
|
| 533 |
column_config={
|
| 534 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 535 |
-
"Spaces Rank": st.column_config.TextColumn("Spaces Rank
|
| 536 |
-
"Models Rank": st.column_config.TextColumn("Models Rank
|
| 537 |
},
|
| 538 |
use_container_width=True,
|
| 539 |
hide_index=False
|
| 540 |
)
|
| 541 |
|
| 542 |
with tab2:
|
| 543 |
-
# Show trending accounts
|
| 544 |
-
st.
|
| 545 |
-
|
| 546 |
-
# Display the top 100 accounts list
|
| 547 |
-
st.markdown("### Spaces Contributors Ranking")
|
| 548 |
|
| 549 |
# Create a data frame for the table
|
| 550 |
if top_owners_spaces:
|
| 551 |
-
ranking_data_spaces = pd.DataFrame(top_owners_spaces[:
|
| 552 |
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
|
| 553 |
|
| 554 |
st.dataframe(
|
| 555 |
ranking_data_spaces,
|
| 556 |
column_config={
|
| 557 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 558 |
-
"Spaces Count": st.column_config.NumberColumn("Spaces Count
|
| 559 |
},
|
| 560 |
use_container_width=True,
|
| 561 |
hide_index=False
|
| 562 |
)
|
| 563 |
|
| 564 |
-
#
|
| 565 |
-
|
| 566 |
-
# Create a bar chart for top 30 contributors
|
| 567 |
-
if top_owners_spaces:
|
| 568 |
-
chart_data = pd.DataFrame(top_owners_spaces[:30], columns=["Owner", "Spaces Count"])
|
| 569 |
-
|
| 570 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
| 571 |
-
bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"])
|
| 572 |
-
|
| 573 |
-
# Add color gradient to bars
|
| 574 |
-
for i, bar in enumerate(bars):
|
| 575 |
-
bar.set_color(plt.cm.viridis(i/len(bars)))
|
| 576 |
-
|
| 577 |
-
ax.set_title("Top 30 Contributors by Number of Spaces")
|
| 578 |
-
ax.set_xlabel("Number of Spaces")
|
| 579 |
-
plt.tight_layout()
|
| 580 |
-
st.pyplot(fig)
|
| 581 |
-
|
| 582 |
-
# Display the top 100 Models accounts list (ADDED SECTION)
|
| 583 |
-
st.markdown("### Models Contributors Ranking")
|
| 584 |
|
| 585 |
# Create a data frame for the Models table
|
| 586 |
if top_owners_models:
|
| 587 |
-
ranking_data_models = pd.DataFrame(top_owners_models[:
|
| 588 |
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
|
| 589 |
|
| 590 |
st.dataframe(
|
| 591 |
ranking_data_models,
|
| 592 |
column_config={
|
| 593 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 594 |
-
"Models Count": st.column_config.NumberColumn("Models Count
|
| 595 |
},
|
| 596 |
use_container_width=True,
|
| 597 |
hide_index=False
|
| 598 |
)
|
| 599 |
-
|
| 600 |
-
# Add stats expander with visualization for Models (ADDED SECTION)
|
| 601 |
-
with st.expander("View Top 30 Models Contributors Chart"):
|
| 602 |
-
# Create a bar chart for top 30 models contributors
|
| 603 |
-
if top_owners_models:
|
| 604 |
-
chart_data = pd.DataFrame(top_owners_models[:30], columns=["Owner", "Models Count"])
|
| 605 |
-
|
| 606 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
| 607 |
-
bars = ax.barh(chart_data["Owner"], chart_data["Models Count"])
|
| 608 |
-
|
| 609 |
-
# Add color gradient to bars
|
| 610 |
-
for i, bar in enumerate(bars):
|
| 611 |
-
bar.set_color(plt.cm.plasma(i/len(bars))) # Using a different colormap for distinction
|
| 612 |
-
|
| 613 |
-
ax.set_title("Top 30 Contributors by Number of Models")
|
| 614 |
-
ax.set_xlabel("Number of Models")
|
| 615 |
-
plt.tight_layout()
|
| 616 |
-
st.pyplot(fig)
|
| 617 |
|
| 618 |
-
#
|
| 619 |
-
st.
|
|
|
|
|
|
|
|
|
|
| 620 |
selected_trending = st.selectbox(
|
| 621 |
-
"
|
| 622 |
options=trending_accounts[:100], # Limit to top 100
|
| 623 |
index=0 if trending_accounts else None,
|
| 624 |
key="trending_selectbox"
|
| 625 |
)
|
| 626 |
|
| 627 |
-
# Custom account input option
|
| 628 |
-
st.markdown(
|
| 629 |
-
custom = st.text_input("Enter username/
|
|
|
|
|
|
|
|
|
|
| 630 |
|
| 631 |
# Set username based on selection or custom input
|
| 632 |
if custom.strip():
|
|
@@ -636,22 +811,39 @@ with st.sidebar:
|
|
| 636 |
else:
|
| 637 |
username = "facebook" # Default fallback
|
| 638 |
|
| 639 |
-
# Year selection
|
| 640 |
-
st.
|
| 641 |
year_options = list(range(datetime.now().year, 2017, -1))
|
| 642 |
-
selected_year = st.selectbox("Select Year", options=year_options)
|
| 643 |
|
| 644 |
-
# Additional options for customization
|
| 645 |
-
st.
|
| 646 |
show_models = st.checkbox("Show Models", value=True)
|
| 647 |
show_datasets = st.checkbox("Show Datasets", value=True)
|
| 648 |
show_spaces = st.checkbox("Show Spaces", value=True)
|
| 649 |
|
| 650 |
# Main Content
|
| 651 |
-
st.
|
| 652 |
|
| 653 |
if username:
|
| 654 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 655 |
# Initialize variables for tracking
|
| 656 |
overall_rank = None
|
| 657 |
spaces_rank = None
|
|
@@ -663,14 +855,17 @@ if username:
|
|
| 663 |
# Display contributor rank if in top 100
|
| 664 |
if username in trending_accounts[:100]:
|
| 665 |
overall_rank = trending_accounts.index(username) + 1
|
| 666 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
|
| 668 |
# Find user in spaces ranking
|
| 669 |
for i, (owner, count) in enumerate(top_owners_spaces):
|
| 670 |
if owner == username:
|
| 671 |
spaces_rank = i+1
|
| 672 |
spaces_count = count
|
| 673 |
-
st.info(f"π Spaces Ranking: #{spaces_rank} with {count} spaces")
|
| 674 |
break
|
| 675 |
|
| 676 |
# Find user in models ranking
|
|
@@ -678,20 +873,9 @@ if username:
|
|
| 678 |
if owner == username:
|
| 679 |
models_rank = i+1
|
| 680 |
models_count = count
|
| 681 |
-
st.info(f"π§ Models Ranking: #{models_rank} with {count} models")
|
| 682 |
break
|
| 683 |
|
| 684 |
-
# Display
|
| 685 |
-
combined_info = []
|
| 686 |
-
if spaces_rank and spaces_rank <= 100:
|
| 687 |
-
combined_info.append(f"Spaces: #{spaces_rank}")
|
| 688 |
-
if models_rank and models_rank <= 100:
|
| 689 |
-
combined_info.append(f"Models: #{models_rank}")
|
| 690 |
-
|
| 691 |
-
if combined_info:
|
| 692 |
-
st.success(f"Combined Rankings (Top 100): {', '.join(combined_info)}")
|
| 693 |
-
|
| 694 |
-
# Add ranking visualization
|
| 695 |
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
|
| 696 |
if rank_chart:
|
| 697 |
st.pyplot(rank_chart)
|
|
@@ -713,8 +897,13 @@ if username:
|
|
| 713 |
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
|
| 714 |
st.stop()
|
| 715 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 716 |
# Fetch commits for each selected type
|
| 717 |
-
for kind in types_to_fetch:
|
| 718 |
try:
|
| 719 |
items = cached_list_items(username, kind)
|
| 720 |
|
|
@@ -728,14 +917,13 @@ if username:
|
|
| 728 |
|
| 729 |
repo_ids = [item.id for item in items]
|
| 730 |
|
| 731 |
-
|
| 732 |
|
| 733 |
# Process repos in chunks
|
| 734 |
chunk_size = 5
|
| 735 |
total_commits = 0
|
| 736 |
all_commit_dates = []
|
| 737 |
|
| 738 |
-
progress_bar = st.progress(0)
|
| 739 |
for i in range(0, len(repo_ids), chunk_size):
|
| 740 |
chunk = repo_ids[i:i + chunk_size]
|
| 741 |
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
|
@@ -749,13 +937,12 @@ if username:
|
|
| 749 |
all_commit_dates.extend(repo_commits)
|
| 750 |
total_commits += repo_count
|
| 751 |
|
| 752 |
-
# Update progress
|
| 753 |
-
|
| 754 |
-
|
|
|
|
|
|
|
| 755 |
|
| 756 |
-
# Complete progress
|
| 757 |
-
progress_bar.progress(1.0)
|
| 758 |
-
|
| 759 |
commits_by_type[kind] = all_commit_dates
|
| 760 |
commit_counts_by_type[kind] = total_commits
|
| 761 |
|
|
@@ -764,72 +951,86 @@ if username:
|
|
| 764 |
commits_by_type[kind] = []
|
| 765 |
commit_counts_by_type[kind] = 0
|
| 766 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 767 |
# Calculate total commits across all types
|
| 768 |
total_commits = sum(commit_counts_by_type.values())
|
| 769 |
|
| 770 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 771 |
|
| 772 |
-
# Profile information
|
| 773 |
-
profile_col1, profile_col2 = st.columns([1, 3])
|
| 774 |
with profile_col1:
|
| 775 |
-
#
|
| 776 |
-
st.
|
| 777 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 778 |
|
| 779 |
-
#
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
break
|
| 784 |
|
| 785 |
-
|
|
|
|
|
|
|
| 786 |
|
| 787 |
with profile_col2:
|
| 788 |
# Display contribution radar chart
|
| 789 |
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
|
| 790 |
st.pyplot(radar_fig)
|
| 791 |
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 797 |
if not all_df.empty:
|
| 798 |
-
all_df
|
|
|
|
|
|
|
| 799 |
|
| 800 |
# Monthly activity chart
|
| 801 |
-
st.
|
|
|
|
| 802 |
monthly_fig = create_monthly_activity(all_df, selected_year)
|
| 803 |
if monthly_fig:
|
| 804 |
st.pyplot(monthly_fig)
|
| 805 |
else:
|
| 806 |
st.info(f"No activity data available for {username} in {selected_year}")
|
| 807 |
-
|
| 808 |
-
# Calendar heatmap for all commits
|
| 809 |
-
st.subheader(f"Contribution Calendar ({selected_year})")
|
| 810 |
-
make_calendar_heatmap(all_df, "All Commits", selected_year)
|
| 811 |
-
|
| 812 |
-
# Contribution distribution pie chart
|
| 813 |
-
st.subheader("Contribution Distribution by Type")
|
| 814 |
-
model_commits = commit_counts_by_type.get("model", 0)
|
| 815 |
-
dataset_commits = commit_counts_by_type.get("dataset", 0)
|
| 816 |
-
space_commits = commit_counts_by_type.get("space", 0)
|
| 817 |
-
|
| 818 |
-
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
|
| 819 |
-
if pie_chart:
|
| 820 |
-
st.pyplot(pie_chart)
|
| 821 |
-
else:
|
| 822 |
-
st.info("No contribution data available to show distribution")
|
| 823 |
|
| 824 |
# Follower growth simulation
|
| 825 |
-
st.
|
| 826 |
-
st.
|
|
|
|
|
|
|
|
|
|
| 827 |
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
|
| 828 |
st.pyplot(follower_chart)
|
| 829 |
|
| 830 |
-
#
|
| 831 |
if total_commits > 0:
|
| 832 |
-
st.
|
| 833 |
|
| 834 |
# Contribution pattern analysis
|
| 835 |
monthly_df = pd.DataFrame(all_commits, columns=["date"])
|
|
@@ -840,58 +1041,104 @@ if username:
|
|
| 840 |
most_active_month = monthly_df['month'].value_counts().idxmax()
|
| 841 |
month_name = datetime(2020, most_active_month, 1).strftime('%B')
|
| 842 |
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
|
|
|
| 850 |
|
| 851 |
# Add ranking context if available
|
| 852 |
if overall_rank:
|
| 853 |
percentile = 100 - overall_rank
|
| 854 |
-
st.markdown(f""
|
| 855 |
-
|
|
|
|
|
|
|
| 856 |
|
| 857 |
-
|
| 858 |
-
""")
|
| 859 |
|
| 860 |
if spaces_rank and spaces_rank <= 10:
|
| 861 |
-
|
| 862 |
elif spaces_rank and spaces_rank <= 30:
|
| 863 |
-
|
| 864 |
|
| 865 |
if models_rank and models_rank <= 10:
|
| 866 |
-
|
| 867 |
elif models_rank and models_rank <= 30:
|
| 868 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 869 |
|
| 870 |
-
#
|
| 871 |
-
st.
|
|
|
|
|
|
|
| 872 |
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
| 873 |
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 896 |
else:
|
| 897 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import time
|
| 10 |
import requests
|
| 11 |
from collections import Counter
|
| 12 |
+
import numpy as np
|
| 13 |
|
| 14 |
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
|
| 15 |
|
| 16 |
+
# ν₯μλ UI μ€νμΌλ§
|
| 17 |
st.markdown("""
|
| 18 |
<style>
|
| 19 |
+
/* μ¬μ΄λλ° μ€νμΌλ§ */
|
| 20 |
[data-testid="stSidebar"] {
|
| 21 |
+
min-width: 35vw !important;
|
| 22 |
+
max-width: 35vw !important;
|
| 23 |
+
background-color: #f8f9fa;
|
| 24 |
+
padding: 1rem;
|
| 25 |
+
border-right: 1px solid #e9ecef;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
/* ν€λ μ€νμΌλ§ */
|
| 29 |
+
h1, h2, h3 {
|
| 30 |
+
color: #1e88e5;
|
| 31 |
+
font-weight: 700;
|
| 32 |
+
}
|
| 33 |
+
h1 {
|
| 34 |
+
font-size: 2.5rem;
|
| 35 |
+
margin-bottom: 1.5rem;
|
| 36 |
+
border-bottom: 2px solid #e0e0e0;
|
| 37 |
+
padding-bottom: 0.5rem;
|
| 38 |
+
}
|
| 39 |
+
h2 {
|
| 40 |
+
font-size: 1.8rem;
|
| 41 |
+
margin-top: 1.5rem;
|
| 42 |
+
}
|
| 43 |
+
h3 {
|
| 44 |
+
font-size: 1.4rem;
|
| 45 |
+
margin-top: 1rem;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
/* μΉ΄λ μ€νμΌλ§ */
|
| 49 |
+
div[data-testid="stMetric"] {
|
| 50 |
+
background-color: #f1f8fe;
|
| 51 |
+
border-radius: 10px;
|
| 52 |
+
padding: 1rem;
|
| 53 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
| 54 |
+
margin-bottom: 1rem;
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
/* μ°¨νΈ μ»¨ν
μ΄λ μ€νμΌλ§ */
|
| 58 |
+
.chart-container {
|
| 59 |
+
background-color: white;
|
| 60 |
+
border-radius: 10px;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
| 63 |
+
margin: 1rem 0;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
/* ν
μ΄λΈ μ€νμΌλ§ */
|
| 67 |
+
div[data-testid="stDataFrame"] {
|
| 68 |
+
background-color: white;
|
| 69 |
+
border-radius: 10px;
|
| 70 |
+
padding: 0.5rem;
|
| 71 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
/* ν μ€νμΌλ§ */
|
| 75 |
+
button[data-baseweb="tab"] {
|
| 76 |
+
font-weight: 600;
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
/* μλΈν€λ λ°°κ²½ */
|
| 80 |
+
.subheader {
|
| 81 |
+
background-color: #f1f8fe;
|
| 82 |
+
padding: 0.5rem 1rem;
|
| 83 |
+
border-radius: 5px;
|
| 84 |
+
margin-bottom: 1rem;
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
/* μ 보 λ±μ§ */
|
| 88 |
+
.info-badge {
|
| 89 |
+
background-color: #e3f2fd;
|
| 90 |
+
color: #1976d2;
|
| 91 |
+
padding: 0.3rem 0.7rem;
|
| 92 |
+
border-radius: 20px;
|
| 93 |
+
display: inline-block;
|
| 94 |
+
font-weight: 500;
|
| 95 |
+
margin-right: 0.5rem;
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
/* νλ‘κ·Έλ μ€ λ° */
|
| 99 |
+
div[data-testid="stProgress"] {
|
| 100 |
+
height: 0.5rem !important;
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
/* λ²νΌ μ€νμΌλ§ */
|
| 104 |
+
.stButton button {
|
| 105 |
+
background-color: #1e88e5;
|
| 106 |
+
color: white;
|
| 107 |
+
border: none;
|
| 108 |
+
font-weight: 500;
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
/* κ²½κ³ /μ±κ³΅ λ©μμ§ κ°μ */
|
| 112 |
+
div[data-testid="stAlert"] {
|
| 113 |
+
border-radius: 10px;
|
| 114 |
+
margin: 1rem 0;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
/* μΉ΄ν
κ³ λ¦¬ λΆμ μΉμ
*/
|
| 118 |
+
.category-section {
|
| 119 |
+
background-color: white;
|
| 120 |
+
border-radius: 10px;
|
| 121 |
+
padding: 1rem;
|
| 122 |
+
margin-bottom: 1.5rem;
|
| 123 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
| 124 |
}
|
| 125 |
</style>
|
| 126 |
""", unsafe_allow_html=True)
|
|
|
|
| 127 |
|
| 128 |
+
api = HfApi()
|
| 129 |
|
| 130 |
# Cache for API responses
|
| 131 |
@lru_cache(maxsize=1000)
|
| 132 |
def cached_repo_info(repo_id, repo_type):
|
| 133 |
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
|
| 134 |
|
|
|
|
| 135 |
@lru_cache(maxsize=1000)
|
| 136 |
def cached_list_commits(repo_id, repo_type):
|
| 137 |
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
|
| 138 |
|
|
|
|
| 139 |
@lru_cache(maxsize=100)
|
| 140 |
def cached_list_items(username, kind):
|
| 141 |
if kind == "model":
|
|
|
|
| 146 |
return list(api.list_spaces(author=username))
|
| 147 |
return []
|
| 148 |
|
|
|
|
| 149 |
# Function to fetch trending accounts and create stats
|
| 150 |
@lru_cache(maxsize=1)
|
| 151 |
def get_trending_accounts(limit=100):
|
|
|
|
| 226 |
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
| 227 |
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
|
| 228 |
|
|
|
|
| 229 |
# Rate limiting
|
| 230 |
class RateLimiter:
|
| 231 |
def __init__(self, calls_per_second=10):
|
|
|
|
| 239 |
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
|
| 240 |
self.last_call = time.time()
|
| 241 |
|
|
|
|
| 242 |
rate_limiter = RateLimiter()
|
| 243 |
|
|
|
|
| 244 |
# Function to fetch commits for a repository (optimized)
|
| 245 |
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
| 246 |
try:
|
|
|
|
| 248 |
# Skip private/gated repos upfront
|
| 249 |
repo_info = cached_repo_info(repo_id, repo_type)
|
| 250 |
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
|
| 251 |
+
return [], 0
|
| 252 |
|
| 253 |
# Get initial commit date
|
| 254 |
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
|
|
|
|
| 269 |
commit_count += 1
|
| 270 |
|
| 271 |
return commit_dates, commit_count
|
| 272 |
+
except Exception as e:
|
| 273 |
return [], 0
|
| 274 |
|
|
|
|
| 275 |
# Function to get commit events for a user (optimized)
|
| 276 |
def get_commit_events(username, kind=None, selected_year=None):
|
| 277 |
commit_dates = []
|
|
|
|
| 306 |
df = df.drop_duplicates() # Remove any duplicate dates
|
| 307 |
return df, items_with_type
|
| 308 |
|
|
|
|
| 309 |
# Calendar heatmap function (optimized)
|
| 310 |
def make_calendar_heatmap(df, title, year):
|
| 311 |
if df.empty:
|
|
|
|
| 347 |
norm = BoundaryNorm(bounds, cmap.N)
|
| 348 |
|
| 349 |
# Create plot more efficiently
|
| 350 |
+
fig, ax = plt.subplots(figsize=(12, 1.5))
|
| 351 |
|
| 352 |
# Convert pivot values to integers to ensure proper color mapping
|
| 353 |
pivot_int = pivot.astype(int)
|
|
|
|
| 356 |
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
|
| 357 |
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
|
| 358 |
|
| 359 |
+
ax.set_title(f"{title}", fontsize=14, pad=10)
|
| 360 |
ax.set_xlabel("")
|
| 361 |
ax.set_ylabel("")
|
| 362 |
ax.set_xticks(month_positions)
|
| 363 |
+
ax.set_xticklabels(month_labels, fontsize=10)
|
| 364 |
+
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=10)
|
| 365 |
+
|
| 366 |
+
# μκ°μ ν₯μμ μν figure μ€νμΌλ§
|
| 367 |
+
fig.tight_layout()
|
| 368 |
+
fig.patch.set_facecolor('#F8F9FA')
|
| 369 |
+
|
| 370 |
st.pyplot(fig)
|
| 371 |
|
|
|
|
| 372 |
# Function to create a fancy contribution radar chart
|
| 373 |
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
|
| 374 |
# Create radar chart for contribution metrics
|
|
|
|
| 385 |
|
| 386 |
normalized += normalized[:1] # Close the loop
|
| 387 |
|
| 388 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True}, facecolor='#F8F9FA')
|
| 389 |
|
| 390 |
+
# Add background grid with improved styling
|
| 391 |
ax.set_theta_offset(np.pi / 2)
|
| 392 |
ax.set_theta_direction(-1)
|
| 393 |
+
ax.set_thetagrids(np.degrees(angles[:-1]), categories, fontsize=12, fontweight='bold')
|
| 394 |
|
| 395 |
+
# 그리λ μ€νμΌλ§ κ°μ
|
| 396 |
+
ax.grid(color='#CCCCCC', linestyle='-', linewidth=0.5, alpha=0.7)
|
| 397 |
+
|
| 398 |
+
# Draw the chart with improved color scheme
|
| 399 |
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
|
| 400 |
+
ax.plot(angles, normalized, color='#4CAF50', linewidth=3)
|
| 401 |
|
| 402 |
+
# Add value labels with improved styling
|
| 403 |
for i, val in enumerate(values):
|
| 404 |
angle = angles[i]
|
| 405 |
+
x = (normalized[i] + 0.1) * np.cos(angle)
|
| 406 |
+
y = (normalized[i] + 0.1) * np.sin(angle)
|
| 407 |
+
ax.text(angle, normalized[i] + 0.1, str(val),
|
| 408 |
+
ha='center', va='center', fontsize=12,
|
| 409 |
+
fontweight='bold', color='#1976D2')
|
| 410 |
+
|
| 411 |
+
# Add highlight circles
|
| 412 |
+
circles = [0.25, 0.5, 0.75, 1.0]
|
| 413 |
+
for circle in circles:
|
| 414 |
+
ax.plot(angles, [circle] * len(angles), color='gray', alpha=0.3, linewidth=0.5, linestyle='--')
|
| 415 |
|
| 416 |
+
ax.set_title(f"{username}'s Contribution Profile", fontsize=16, pad=20, fontweight='bold')
|
| 417 |
+
|
| 418 |
+
# λ°°κ²½ μ μμ κΈ°
|
| 419 |
+
ax.set_facecolor('#F8F9FA')
|
| 420 |
|
| 421 |
return fig
|
| 422 |
|
|
|
|
| 423 |
# Function to create contribution distribution pie chart
|
| 424 |
def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
| 425 |
labels = ['Models', 'Datasets', 'Spaces']
|
|
|
|
| 432 |
if not filtered_sizes:
|
| 433 |
return None # No data to show
|
| 434 |
|
| 435 |
+
# Use a more attractive color scheme
|
| 436 |
colors = ['#FF9800', '#2196F3', '#4CAF50']
|
| 437 |
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
|
| 438 |
|
| 439 |
+
fig, ax = plt.subplots(figsize=(7, 7), facecolor='#F8F9FA')
|
|
|
|
| 440 |
|
| 441 |
+
# Create exploded pie chart with improved styling
|
| 442 |
+
explode = [0.1] * len(filtered_sizes) # Explode all slices for better visualization
|
|
|
|
| 443 |
|
| 444 |
+
wedges, texts, autotexts = ax.pie(
|
| 445 |
+
filtered_sizes,
|
| 446 |
+
labels=None, # We'll add custom labels
|
| 447 |
+
colors=filtered_colors,
|
| 448 |
+
autopct='%1.1f%%',
|
| 449 |
+
startangle=90,
|
| 450 |
+
shadow=True,
|
| 451 |
+
explode=explode,
|
| 452 |
+
textprops={'fontsize': 14, 'weight': 'bold'},
|
| 453 |
+
wedgeprops={'edgecolor': 'white', 'linewidth': 2}
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# Customize the percentage text
|
| 457 |
+
for autotext in autotexts:
|
| 458 |
+
autotext.set_color('white')
|
| 459 |
+
autotext.set_fontsize(12)
|
| 460 |
+
autotext.set_weight('bold')
|
| 461 |
+
|
| 462 |
+
# Add legend with custom styling
|
| 463 |
+
ax.legend(
|
| 464 |
+
wedges,
|
| 465 |
+
[f"{label} ({size})" for label, size in zip(filtered_labels, filtered_sizes)],
|
| 466 |
+
title="Contribution Types",
|
| 467 |
+
loc="center left",
|
| 468 |
+
bbox_to_anchor=(0.85, 0.5),
|
| 469 |
+
fontsize=12
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
ax.set_title('Distribution of Contributions by Type', fontsize=16, pad=20, fontweight='bold')
|
| 473 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
| 474 |
|
| 475 |
return fig
|
| 476 |
|
|
|
|
| 477 |
# Function to create monthly activity chart
|
| 478 |
def create_monthly_activity(df, year):
|
| 479 |
if df.empty:
|
|
|
|
| 481 |
|
| 482 |
# Aggregate by month
|
| 483 |
df['date'] = pd.to_datetime(df['date'])
|
| 484 |
+
df['month'] = df['date'].dt.month
|
| 485 |
+
df['month_name'] = df['date'].dt.strftime('%b')
|
|
|
|
|
|
|
| 486 |
|
| 487 |
+
# Count by month and ensure all months are present
|
| 488 |
+
month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
| 489 |
+
counts_by_month = df.groupby('month_name')['date'].count()
|
| 490 |
+
monthly_counts = pd.Series([counts_by_month.get(m, 0) for m in month_order], index=month_order)
|
| 491 |
|
| 492 |
+
# Create bar chart with improved styling
|
| 493 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
| 494 |
+
|
| 495 |
+
# Create bars with gradient colors based on activity level
|
| 496 |
+
norm = plt.Normalize(0, monthly_counts.max() if monthly_counts.max() > 0 else 1)
|
| 497 |
+
colors = plt.cm.viridis(norm(monthly_counts.values))
|
| 498 |
+
|
| 499 |
+
bars = ax.bar(monthly_counts.index, monthly_counts.values, color=colors, width=0.7)
|
| 500 |
|
| 501 |
# Highlight the month with most activity
|
| 502 |
+
if monthly_counts.max() > 0:
|
| 503 |
+
max_idx = monthly_counts.argmax()
|
| 504 |
bars[max_idx].set_color('#FF5722')
|
| 505 |
+
bars[max_idx].set_edgecolor('black')
|
| 506 |
+
bars[max_idx].set_linewidth(1.5)
|
| 507 |
|
| 508 |
+
# Add labels and styling with enhanced design
|
| 509 |
+
ax.set_title(f'Monthly Activity in {year}', fontsize=18, pad=20, fontweight='bold')
|
| 510 |
+
ax.set_xlabel('Month', fontsize=14, labelpad=10)
|
| 511 |
+
ax.set_ylabel('Number of Contributions', fontsize=14, labelpad=10)
|
| 512 |
|
| 513 |
+
# Add value labels on top of bars with improved styling
|
| 514 |
+
for i, count in enumerate(monthly_counts.values):
|
| 515 |
if count > 0:
|
| 516 |
+
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=12, fontweight='bold')
|
| 517 |
|
| 518 |
+
# Add grid for better readability with improved styling
|
| 519 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7, color='#CCCCCC')
|
| 520 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
| 521 |
+
|
| 522 |
+
# Style the chart borders and background
|
| 523 |
+
ax.spines['top'].set_visible(False)
|
| 524 |
+
ax.spines['right'].set_visible(False)
|
| 525 |
+
ax.spines['left'].set_linewidth(0.5)
|
| 526 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
| 527 |
+
|
| 528 |
+
# Adjust tick parameters for better look
|
| 529 |
+
ax.tick_params(axis='x', labelsize=12, pad=5)
|
| 530 |
+
ax.tick_params(axis='y', labelsize=12, pad=5)
|
| 531 |
|
|
|
|
| 532 |
plt.tight_layout()
|
| 533 |
|
| 534 |
return fig
|
| 535 |
|
|
|
|
| 536 |
# Function to render follower growth simulation
|
| 537 |
def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
| 538 |
# Simulate follower growth based on contribution metrics
|
|
|
|
| 560 |
# Ensure end value matches our base_followers estimate
|
| 561 |
followers[-1] = base_followers
|
| 562 |
|
| 563 |
+
# Create the chart with improved styling
|
| 564 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
|
|
|
| 565 |
|
| 566 |
+
# Create gradient line for better visualization
|
| 567 |
+
points = np.array([dates, followers]).T.reshape(-1, 1, 2)
|
| 568 |
+
segments = np.concatenate([points[:-1], points[1:]], axis=1)
|
|
|
|
| 569 |
|
| 570 |
+
from matplotlib.collections import LineCollection
|
| 571 |
+
norm = plt.Normalize(0, len(segments))
|
| 572 |
+
lc = LineCollection(segments, cmap='viridis', norm=norm, linewidth=3, alpha=0.8)
|
| 573 |
+
lc.set_array(np.arange(len(segments)))
|
| 574 |
+
line = ax.add_collection(lc)
|
| 575 |
+
|
| 576 |
+
# Add markers
|
| 577 |
+
ax.scatter(dates, followers, s=50, color='#9C27B0', alpha=0.8, zorder=10)
|
| 578 |
+
|
| 579 |
+
# Add styling with enhanced design
|
| 580 |
+
ax.set_title(f"Estimated Follower Growth for {username}", fontsize=18, pad=20, fontweight='bold')
|
| 581 |
+
ax.set_xlabel("Date", fontsize=14, labelpad=10)
|
| 582 |
+
ax.set_ylabel("Followers", fontsize=14, labelpad=10)
|
| 583 |
+
|
| 584 |
+
# Format the axes limits
|
| 585 |
+
ax.set_xlim(dates.min(), dates.max())
|
| 586 |
+
ax.set_ylim(0, max(followers) * 1.1)
|
| 587 |
+
|
| 588 |
+
# Add grid for better readability with improved styling
|
| 589 |
+
ax.grid(True, linestyle='--', alpha=0.7, color='#CCCCCC')
|
| 590 |
+
ax.set_axisbelow(True) # Grid lines behind plot
|
| 591 |
+
|
| 592 |
+
# Style the chart borders and background
|
| 593 |
+
ax.spines['top'].set_visible(False)
|
| 594 |
+
ax.spines['right'].set_visible(False)
|
| 595 |
+
ax.spines['left'].set_linewidth(0.5)
|
| 596 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
| 597 |
+
|
| 598 |
+
# Adjust tick parameters for better look
|
| 599 |
+
ax.tick_params(axis='x', labelsize=12, rotation=45)
|
| 600 |
+
ax.tick_params(axis='y', labelsize=12)
|
| 601 |
+
|
| 602 |
+
# Add annotations for start and end points
|
| 603 |
+
ax.annotate(f"Start: {followers[0]}",
|
| 604 |
+
xy=(dates[0], followers[0]),
|
| 605 |
+
xytext=(10, 10),
|
| 606 |
+
textcoords='offset points',
|
| 607 |
+
fontsize=12,
|
| 608 |
+
fontweight='bold',
|
| 609 |
+
color='#9C27B0',
|
| 610 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
| 611 |
+
|
| 612 |
+
ax.annotate(f"Current: {followers[-1]}",
|
| 613 |
+
xy=(dates[-1], followers[-1]),
|
| 614 |
+
xytext=(-10, 10),
|
| 615 |
+
textcoords='offset points',
|
| 616 |
+
fontsize=12,
|
| 617 |
+
fontweight='bold',
|
| 618 |
+
color='#9C27B0',
|
| 619 |
+
ha='right',
|
| 620 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
| 621 |
|
|
|
|
|
|
|
| 622 |
plt.tight_layout()
|
| 623 |
|
| 624 |
return fig
|
| 625 |
|
|
|
|
| 626 |
# Function to create ranking position visualization
|
| 627 |
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
| 628 |
if not (overall_rank or spaces_rank or models_rank):
|
| 629 |
return None
|
| 630 |
|
| 631 |
+
# Create a horizontal bar chart for rankings with improved styling
|
| 632 |
+
fig, ax = plt.subplots(figsize=(12, 5), facecolor='#F8F9FA')
|
| 633 |
|
| 634 |
categories = []
|
| 635 |
positions = []
|
| 636 |
colors = []
|
| 637 |
+
rank_values = []
|
| 638 |
|
| 639 |
if overall_rank:
|
| 640 |
categories.append('Overall')
|
| 641 |
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
|
| 642 |
colors.append('#673AB7')
|
| 643 |
+
rank_values.append(overall_rank)
|
| 644 |
|
| 645 |
if spaces_rank:
|
| 646 |
categories.append('Spaces')
|
| 647 |
positions.append(101 - spaces_rank)
|
| 648 |
colors.append('#2196F3')
|
| 649 |
+
rank_values.append(spaces_rank)
|
| 650 |
|
| 651 |
if models_rank:
|
| 652 |
categories.append('Models')
|
| 653 |
positions.append(101 - models_rank)
|
| 654 |
colors.append('#FF9800')
|
| 655 |
+
rank_values.append(models_rank)
|
| 656 |
|
| 657 |
+
# Create horizontal bars with enhanced styling
|
| 658 |
+
bars = ax.barh(categories, positions, color=colors, alpha=0.8, height=0.6,
|
| 659 |
+
edgecolor='white', linewidth=1.5)
|
| 660 |
|
| 661 |
+
# Add rank values as text with improved styling
|
| 662 |
for i, bar in enumerate(bars):
|
| 663 |
+
ax.text(bar.get_width() + 2, bar.get_y() + bar.get_height()/2,
|
| 664 |
+
f'Rank #{rank_values[i]}', va='center', fontsize=12,
|
| 665 |
+
fontweight='bold', color=colors[i])
|
| 666 |
+
|
| 667 |
+
# Set chart properties with enhanced styling
|
| 668 |
+
ax.set_xlim(0, 105)
|
| 669 |
+
ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=18, pad=20, fontweight='bold')
|
| 670 |
+
ax.set_xlabel("Percentile (higher is better)", fontsize=14, labelpad=10)
|
| 671 |
+
|
| 672 |
+
# Add explanatory text
|
| 673 |
+
ax.text(50, -0.6, "β Lower rank (higher number) | Higher rank (lower number) β",
|
| 674 |
+
ha='center', va='center', fontsize=10, fontweight='bold', color='#666666')
|
| 675 |
|
| 676 |
+
# Add a vertical line at 90th percentile to highlight top 10 with improved styling
|
| 677 |
+
ax.axvline(x=90, color='#FF5252', linestyle='--', alpha=0.7, linewidth=2)
|
| 678 |
+
ax.text(92, len(categories)/2, 'Top 10', color='#D32F2F', fontsize=12,
|
| 679 |
+
rotation=90, va='center', fontweight='bold')
|
| 680 |
|
| 681 |
+
# Style the chart borders and background
|
| 682 |
+
ax.spines['top'].set_visible(False)
|
| 683 |
+
ax.spines['right'].set_visible(False)
|
| 684 |
+
ax.spines['left'].set_linewidth(0.5)
|
| 685 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
| 686 |
+
|
| 687 |
+
# Adjust tick parameters for better look
|
| 688 |
+
ax.tick_params(axis='x', labelsize=12)
|
| 689 |
+
ax.tick_params(axis='y', labelsize=14, pad=5)
|
| 690 |
+
|
| 691 |
+
# Add grid for better readability
|
| 692 |
+
ax.grid(axis='x', linestyle='--', alpha=0.5, color='#CCCCCC')
|
| 693 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
| 694 |
|
| 695 |
# Invert x-axis to show ranking position more intuitively
|
| 696 |
ax.invert_xaxis()
|
|
|
|
| 698 |
plt.tight_layout()
|
| 699 |
return fig
|
| 700 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
| 702 |
with st.spinner("Loading trending accounts..."):
|
| 703 |
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
| 704 |
|
| 705 |
# Sidebar
|
| 706 |
with st.sidebar:
|
| 707 |
+
st.markdown('<h1 style="text-align: center; color: #1E88E5;">π€ Contributor</h1>', unsafe_allow_html=True)
|
| 708 |
|
| 709 |
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
|
| 710 |
tab1, tab2 = st.tabs([
|
| 711 |
+
"Top 100 Overall",
|
| 712 |
+
"Top Spaces & Models"
|
| 713 |
])
|
| 714 |
|
| 715 |
with tab1:
|
| 716 |
# Show combined trending accounts list
|
| 717 |
+
st.markdown('<div class="subheader"><h3>π₯ Top 100 Contributors</h3></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
| 718 |
|
| 719 |
# Create a data frame for the table
|
| 720 |
if trending_accounts:
|
|
|
|
| 740 |
ranking_data_overall,
|
| 741 |
column_config={
|
| 742 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 743 |
+
"Spaces Rank": st.column_config.TextColumn("Spaces Rank"),
|
| 744 |
+
"Models Rank": st.column_config.TextColumn("Models Rank")
|
| 745 |
},
|
| 746 |
use_container_width=True,
|
| 747 |
hide_index=False
|
| 748 |
)
|
| 749 |
|
| 750 |
with tab2:
|
| 751 |
+
# Show trending accounts by Spaces & Models
|
| 752 |
+
st.markdown('<div class="subheader"><h3>π Spaces Leaders</h3></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
| 753 |
|
| 754 |
# Create a data frame for the table
|
| 755 |
if top_owners_spaces:
|
| 756 |
+
ranking_data_spaces = pd.DataFrame(top_owners_spaces[:50], columns=["Contributor", "Spaces Count"])
|
| 757 |
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
|
| 758 |
|
| 759 |
st.dataframe(
|
| 760 |
ranking_data_spaces,
|
| 761 |
column_config={
|
| 762 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 763 |
+
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
|
| 764 |
},
|
| 765 |
use_container_width=True,
|
| 766 |
hide_index=False
|
| 767 |
)
|
| 768 |
|
| 769 |
+
# Display the top Models accounts list
|
| 770 |
+
st.markdown('<div class="subheader"><h3>π§ Models Leaders</h3></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 771 |
|
| 772 |
# Create a data frame for the Models table
|
| 773 |
if top_owners_models:
|
| 774 |
+
ranking_data_models = pd.DataFrame(top_owners_models[:50], columns=["Contributor", "Models Count"])
|
| 775 |
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
|
| 776 |
|
| 777 |
st.dataframe(
|
| 778 |
ranking_data_models,
|
| 779 |
column_config={
|
| 780 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
| 781 |
+
"Models Count": st.column_config.NumberColumn("Models Count", format="%d")
|
| 782 |
},
|
| 783 |
use_container_width=True,
|
| 784 |
hide_index=False
|
| 785 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
|
| 787 |
+
# Add visual divider
|
| 788 |
+
st.markdown('<hr style="margin: 2rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
| 789 |
+
|
| 790 |
+
# Display contributor selection with enhanced styling
|
| 791 |
+
st.markdown('<div class="subheader"><h3>Select Contributor</h3></div>', unsafe_allow_html=True)
|
| 792 |
selected_trending = st.selectbox(
|
| 793 |
+
"Choose from trending accounts",
|
| 794 |
options=trending_accounts[:100], # Limit to top 100
|
| 795 |
index=0 if trending_accounts else None,
|
| 796 |
key="trending_selectbox"
|
| 797 |
)
|
| 798 |
|
| 799 |
+
# Custom account input option with enhanced styling
|
| 800 |
+
st.markdown('<div style="text-align: center; margin: 15px 0; font-weight: bold;">- OR -</div>', unsafe_allow_html=True)
|
| 801 |
+
custom = st.text_input("Enter a username/organization:", placeholder="e.g. facebook, google...")
|
| 802 |
+
|
| 803 |
+
# Add visual divider
|
| 804 |
+
st.markdown('<hr style="margin: 1.5rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
| 805 |
|
| 806 |
# Set username based on selection or custom input
|
| 807 |
if custom.strip():
|
|
|
|
| 811 |
else:
|
| 812 |
username = "facebook" # Default fallback
|
| 813 |
|
| 814 |
+
# Year selection with enhanced styling
|
| 815 |
+
st.markdown('<div class="subheader"><h3>ποΈ Time Period</h3></div>', unsafe_allow_html=True)
|
| 816 |
year_options = list(range(datetime.now().year, 2017, -1))
|
| 817 |
+
selected_year = st.selectbox("Select Year:", options=year_options)
|
| 818 |
|
| 819 |
+
# Additional options for customization with enhanced styling
|
| 820 |
+
st.markdown('<div class="subheader"><h3>βοΈ Display Options</h3></div>', unsafe_allow_html=True)
|
| 821 |
show_models = st.checkbox("Show Models", value=True)
|
| 822 |
show_datasets = st.checkbox("Show Datasets", value=True)
|
| 823 |
show_spaces = st.checkbox("Show Spaces", value=True)
|
| 824 |
|
| 825 |
# Main Content
|
| 826 |
+
st.markdown(f'<h1 style="text-align: center; color: #1E88E5; margin-bottom: 2rem;">π€ Hugging Face Contributions</h1>', unsafe_allow_html=True)
|
| 827 |
|
| 828 |
if username:
|
| 829 |
+
# Create a header card with contributor info
|
| 830 |
+
header_col1, header_col2 = st.columns([1, 2])
|
| 831 |
+
with header_col1:
|
| 832 |
+
st.markdown(f'<div style="background-color: #E3F2FD; padding: 20px; border-radius: 10px; border-left: 5px solid #1E88E5;">'
|
| 833 |
+
f'<h2 style="color: #1E88E5;">π€ {username}</h2>'
|
| 834 |
+
f'<p style="font-size: 16px;">Analyzing contributions for {selected_year}</p>'
|
| 835 |
+
f'<p><a href="https://huggingface.co/{username}" target="_blank" style="color: #1E88E5; font-weight: bold;">View Profile</a></p>'
|
| 836 |
+
f'</div>', unsafe_allow_html=True)
|
| 837 |
+
|
| 838 |
+
with header_col2:
|
| 839 |
+
# Add explanation about the app
|
| 840 |
+
st.markdown(f'<div style="background-color: #F3E5F5; padding: 20px; border-radius: 10px; border-left: 5px solid #9C27B0;">'
|
| 841 |
+
f'<h3 style="color: #9C27B0;">About This Analysis</h3>'
|
| 842 |
+
f'<p>This dashboard analyzes {username}\'s contributions to Hugging Face in {selected_year}, including models, datasets, and spaces.</p>'
|
| 843 |
+
f'<p style="font-style: italic; font-size: 12px;">* Some metrics like follower growth are simulated for visualization purposes.</p>'
|
| 844 |
+
f'</div>', unsafe_allow_html=True)
|
| 845 |
+
|
| 846 |
+
with st.spinner(f"Fetching contribution data for {username}..."):
|
| 847 |
# Initialize variables for tracking
|
| 848 |
overall_rank = None
|
| 849 |
spaces_rank = None
|
|
|
|
| 855 |
# Display contributor rank if in top 100
|
| 856 |
if username in trending_accounts[:100]:
|
| 857 |
overall_rank = trending_accounts.index(username) + 1
|
| 858 |
+
|
| 859 |
+
# Create a prominent ranking display
|
| 860 |
+
st.markdown(f'<div style="background-color: #FFF8E1; padding: 20px; border-radius: 10px; border-left: 5px solid #FFC107; margin: 1rem 0;">'
|
| 861 |
+
f'<h2 style="color: #FFA000; text-align: center;">π Ranked #{overall_rank} in Top Contributors</h2>'
|
| 862 |
+
f'</div>', unsafe_allow_html=True)
|
| 863 |
|
| 864 |
# Find user in spaces ranking
|
| 865 |
for i, (owner, count) in enumerate(top_owners_spaces):
|
| 866 |
if owner == username:
|
| 867 |
spaces_rank = i+1
|
| 868 |
spaces_count = count
|
|
|
|
| 869 |
break
|
| 870 |
|
| 871 |
# Find user in models ranking
|
|
|
|
| 873 |
if owner == username:
|
| 874 |
models_rank = i+1
|
| 875 |
models_count = count
|
|
|
|
| 876 |
break
|
| 877 |
|
| 878 |
+
# Display ranking visualization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 879 |
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
|
| 880 |
if rank_chart:
|
| 881 |
st.pyplot(rank_chart)
|
|
|
|
| 897 |
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
|
| 898 |
st.stop()
|
| 899 |
|
| 900 |
+
# Create a progress container
|
| 901 |
+
progress_container = st.container()
|
| 902 |
+
progress_container.markdown('<h3 style="color: #1E88E5;">Fetching Repository Data...</h3>', unsafe_allow_html=True)
|
| 903 |
+
progress_bar = progress_container.progress(0)
|
| 904 |
+
|
| 905 |
# Fetch commits for each selected type
|
| 906 |
+
for type_index, kind in enumerate(types_to_fetch):
|
| 907 |
try:
|
| 908 |
items = cached_list_items(username, kind)
|
| 909 |
|
|
|
|
| 917 |
|
| 918 |
repo_ids = [item.id for item in items]
|
| 919 |
|
| 920 |
+
progress_container.info(f"Found {len(repo_ids)} {kind}s for {username}")
|
| 921 |
|
| 922 |
# Process repos in chunks
|
| 923 |
chunk_size = 5
|
| 924 |
total_commits = 0
|
| 925 |
all_commit_dates = []
|
| 926 |
|
|
|
|
| 927 |
for i in range(0, len(repo_ids), chunk_size):
|
| 928 |
chunk = repo_ids[i:i + chunk_size]
|
| 929 |
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
|
|
|
| 937 |
all_commit_dates.extend(repo_commits)
|
| 938 |
total_commits += repo_count
|
| 939 |
|
| 940 |
+
# Update progress for all types
|
| 941 |
+
progress_per_type = 1.0 / len(types_to_fetch)
|
| 942 |
+
current_type_progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
|
| 943 |
+
overall_progress = (type_index * progress_per_type) + (current_type_progress * progress_per_type)
|
| 944 |
+
progress_bar.progress(overall_progress)
|
| 945 |
|
|
|
|
|
|
|
|
|
|
| 946 |
commits_by_type[kind] = all_commit_dates
|
| 947 |
commit_counts_by_type[kind] = total_commits
|
| 948 |
|
|
|
|
| 951 |
commits_by_type[kind] = []
|
| 952 |
commit_counts_by_type[kind] = 0
|
| 953 |
|
| 954 |
+
# Complete progress
|
| 955 |
+
progress_bar.progress(1.0)
|
| 956 |
+
progress_container.success("Data fetching complete!")
|
| 957 |
+
time.sleep(0.5) # Short pause for visual feedback
|
| 958 |
+
progress_container.empty() # Clear the progress indicators
|
| 959 |
+
|
| 960 |
# Calculate total commits across all types
|
| 961 |
total_commits = sum(commit_counts_by_type.values())
|
| 962 |
|
| 963 |
+
# Main dashboard layout with improved structure
|
| 964 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Activity Overview</h2>', unsafe_allow_html=True)
|
| 965 |
+
|
| 966 |
+
# Profile summary
|
| 967 |
+
profile_col1, profile_col2 = st.columns([1, 2])
|
| 968 |
|
|
|
|
|
|
|
| 969 |
with profile_col1:
|
| 970 |
+
# Create a stats card with key metrics
|
| 971 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
| 972 |
+
f'<h3 style="color: #1E88E5; text-align: center; margin-bottom: 15px;">Contribution Stats</h3>'
|
| 973 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 974 |
+
f'<span style="font-weight: bold;">Total Commits:</span><span>{total_commits}</span></div>'
|
| 975 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 976 |
+
f'<span style="font-weight: bold;">Models:</span><span>{models_count}</span></div>'
|
| 977 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 978 |
+
f'<span style="font-weight: bold;">Datasets:</span><span>{datasets_count}</span></div>'
|
| 979 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
| 980 |
+
f'<span style="font-weight: bold;">Spaces:</span><span>{spaces_count}</span></div>'
|
| 981 |
+
f'</div>', unsafe_allow_html=True)
|
| 982 |
|
| 983 |
+
# Type breakdown pie chart
|
| 984 |
+
model_commits = commit_counts_by_type.get("model", 0)
|
| 985 |
+
dataset_commits = commit_counts_by_type.get("dataset", 0)
|
| 986 |
+
space_commits = commit_counts_by_type.get("space", 0)
|
|
|
|
| 987 |
|
| 988 |
+
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
|
| 989 |
+
if pie_chart:
|
| 990 |
+
st.pyplot(pie_chart)
|
| 991 |
|
| 992 |
with profile_col2:
|
| 993 |
# Display contribution radar chart
|
| 994 |
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
|
| 995 |
st.pyplot(radar_fig)
|
| 996 |
|
| 997 |
+
# Create DataFrame for all commits
|
| 998 |
+
all_commits = []
|
| 999 |
+
for commits in commits_by_type.values():
|
| 1000 |
+
all_commits.extend(commits)
|
| 1001 |
+
all_df = pd.DataFrame(all_commits, columns=["date"])
|
| 1002 |
+
if not all_df.empty:
|
| 1003 |
+
all_df = all_df.drop_duplicates() # Remove any duplicate dates
|
| 1004 |
+
|
| 1005 |
+
# Calendar heatmap for all commits in a separate section
|
| 1006 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Contribution Calendar</h2>', unsafe_allow_html=True)
|
| 1007 |
+
|
| 1008 |
if not all_df.empty:
|
| 1009 |
+
make_calendar_heatmap(all_df, "All Contributions", selected_year)
|
| 1010 |
+
else:
|
| 1011 |
+
st.info(f"No contributions found for {username} in {selected_year}")
|
| 1012 |
|
| 1013 |
# Monthly activity chart
|
| 1014 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Monthly Activity</h2>', unsafe_allow_html=True)
|
| 1015 |
+
|
| 1016 |
monthly_fig = create_monthly_activity(all_df, selected_year)
|
| 1017 |
if monthly_fig:
|
| 1018 |
st.pyplot(monthly_fig)
|
| 1019 |
else:
|
| 1020 |
st.info(f"No activity data available for {username} in {selected_year}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1021 |
|
| 1022 |
# Follower growth simulation
|
| 1023 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Growth Projection</h2>', unsafe_allow_html=True)
|
| 1024 |
+
st.markdown('<div style="background-color: #EDE7F6; padding: 10px; border-radius: 5px; margin-bottom: 15px;">'
|
| 1025 |
+
'<p style="font-style: italic; margin: 0;">π This is a simulation based on contribution metrics - for visualization purposes only</p>'
|
| 1026 |
+
'</div>', unsafe_allow_html=True)
|
| 1027 |
+
|
| 1028 |
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
|
| 1029 |
st.pyplot(follower_chart)
|
| 1030 |
|
| 1031 |
+
# Analytics summary section
|
| 1032 |
if total_commits > 0:
|
| 1033 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">π Analytics Summary</h2>', unsafe_allow_html=True)
|
| 1034 |
|
| 1035 |
# Contribution pattern analysis
|
| 1036 |
monthly_df = pd.DataFrame(all_commits, columns=["date"])
|
|
|
|
| 1041 |
most_active_month = monthly_df['month'].value_counts().idxmax()
|
| 1042 |
month_name = datetime(2020, most_active_month, 1).strftime('%B')
|
| 1043 |
|
| 1044 |
+
# Create a summary card
|
| 1045 |
+
st.markdown(f'<div style="background-color: white; padding: 25px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
| 1046 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Activity Analysis for {username}</h3>'
|
| 1047 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
| 1048 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Total Activity:</strong> {total_commits} contributions in {selected_year}</li>'
|
| 1049 |
+
f'<li style="margin: 15px 0; font-size: 16px;">ποΈ <strong>Most Active Month:</strong> {month_name} with {monthly_df["month"].value_counts().max()} contributions</li>'
|
| 1050 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π§© <strong>Repository Breakdown:</strong> {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets</li>'
|
| 1051 |
+
f'</ul>', unsafe_allow_html=True)
|
| 1052 |
|
| 1053 |
# Add ranking context if available
|
| 1054 |
if overall_rank:
|
| 1055 |
percentile = 100 - overall_rank
|
| 1056 |
+
st.markdown(f'<div style="margin-top: 20px;">'
|
| 1057 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Ranking Analysis</h3>'
|
| 1058 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
| 1059 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Overall Ranking:</strong> #{overall_rank} (Top {percentile}% of contributors)</li>', unsafe_allow_html=True)
|
| 1060 |
|
| 1061 |
+
badge_html = '<div style="margin: 20px 0;">'
|
|
|
|
| 1062 |
|
| 1063 |
if spaces_rank and spaces_rank <= 10:
|
| 1064 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Spaces Contributor (#{spaces_rank})</span>'
|
| 1065 |
elif spaces_rank and spaces_rank <= 30:
|
| 1066 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Spaces Contributor (#{spaces_rank})</span>'
|
| 1067 |
|
| 1068 |
if models_rank and models_rank <= 10:
|
| 1069 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Models Contributor (#{models_rank})</span>'
|
| 1070 |
elif models_rank and models_rank <= 30:
|
| 1071 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Models Contributor (#{models_rank})</span>'
|
| 1072 |
+
|
| 1073 |
+
badge_html += '</div>'
|
| 1074 |
+
|
| 1075 |
+
# Add achievement badges
|
| 1076 |
+
if spaces_rank or models_rank:
|
| 1077 |
+
st.markdown(badge_html, unsafe_allow_html=True)
|
| 1078 |
+
|
| 1079 |
+
st.markdown('</ul></div></div>', unsafe_allow_html=True)
|
| 1080 |
|
| 1081 |
+
# Detailed category analysis section
|
| 1082 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Detailed Category Analysis</h2>', unsafe_allow_html=True)
|
| 1083 |
+
|
| 1084 |
+
# Create category cards in columns
|
| 1085 |
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
| 1086 |
|
| 1087 |
+
category_icons = {
|
| 1088 |
+
"model": "π§ ",
|
| 1089 |
+
"dataset": "π¦",
|
| 1090 |
+
"space": "π"
|
| 1091 |
+
}
|
| 1092 |
+
|
| 1093 |
+
category_colors = {
|
| 1094 |
+
"model": "#FF9800",
|
| 1095 |
+
"dataset": "#2196F3",
|
| 1096 |
+
"space": "#4CAF50"
|
| 1097 |
+
}
|
| 1098 |
+
|
| 1099 |
+
for i, kind in enumerate(types_to_fetch):
|
| 1100 |
+
with cols[i]:
|
| 1101 |
+
try:
|
| 1102 |
+
emoji = category_icons.get(kind, "π")
|
| 1103 |
+
label = kind.capitalize() + "s"
|
| 1104 |
+
color = category_colors.get(kind, "#1E88E5")
|
| 1105 |
+
|
| 1106 |
+
total = len(cached_list_items(username, kind))
|
| 1107 |
+
commits = commits_by_type.get(kind, [])
|
| 1108 |
+
commit_count = commit_counts_by_type.get(kind, 0)
|
| 1109 |
+
|
| 1110 |
+
# Create styled card header
|
| 1111 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid {color};">'
|
| 1112 |
+
f'<h3 style="color: {color}; text-align: center;">{emoji} {label}</h3>'
|
| 1113 |
+
f'<div style="display: flex; justify-content: space-between; margin: 15px 0;">'
|
| 1114 |
+
f'<span style="font-weight: bold;">Total:</span><span>{total}</span></div>'
|
| 1115 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 15px;">'
|
| 1116 |
+
f'<span style="font-weight: bold;">Commits:</span><span>{commit_count}</span></div>'
|
| 1117 |
+
f'</div>', unsafe_allow_html=True)
|
| 1118 |
+
|
| 1119 |
+
# Create calendar for this type
|
| 1120 |
+
df_kind = pd.DataFrame(commits, columns=["date"])
|
| 1121 |
+
if not df_kind.empty:
|
| 1122 |
+
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
|
| 1123 |
+
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
|
| 1124 |
+
else:
|
| 1125 |
+
st.info(f"No {label.lower()} activity in {selected_year}")
|
| 1126 |
+
|
| 1127 |
+
except Exception as e:
|
| 1128 |
+
st.warning(f"Error processing {kind.capitalize()}s: {str(e)}")
|
| 1129 |
+
# Show empty placeholder
|
| 1130 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid #9E9E9E; text-align: center;">'
|
| 1131 |
+
f'<h3 style="color: #9E9E9E;">β οΈ Error</h3>'
|
| 1132 |
+
f'<p>Could not load {kind.capitalize()}s data</p>'
|
| 1133 |
+
f'</div>', unsafe_allow_html=True)
|
| 1134 |
+
|
| 1135 |
+
# Footer
|
| 1136 |
+
st.markdown('<hr style="margin: 3rem 0 1rem 0;">', unsafe_allow_html=True)
|
| 1137 |
+
st.markdown('<p style="text-align: center; color: #9E9E9E; font-size: 0.8rem;">Hugging Face Contributions Dashboard | Data fetched from Hugging Face API</p>', unsafe_allow_html=True)
|
| 1138 |
else:
|
| 1139 |
+
# If no username is selected, show welcome screen
|
| 1140 |
+
st.markdown(f'<div style="text-align: center; margin: 50px 0;">'
|
| 1141 |
+
f'<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="width: 200px; margin-bottom: 30px;">'
|
| 1142 |
+
f'<h2>Welcome to Hugging Face Contributions Dashboard</h2>'
|
| 1143 |
+
f'<p style="font-size: 1.2rem;">Please select a contributor from the sidebar to view their activity.</p>'
|
| 1144 |
+
f'</div>', unsafe_allow_html=True)
|