Spaces:
Sleeping
Sleeping
| from typing import List, Sequence, Tuple | |
| import numpy as np | |
| import faiss | |
| from vectorizer import Vectorizer | |
| class PromptSearchEngine(object): | |
| """ | |
| TODO | |
| """ | |
| def __init__(self, prompts: Sequence[str]) -> None: | |
| """ | |
| TODO | |
| """ | |
| self.vectorizer = Vectorizer() | |
| self.corpus_vectors = self.vectorizer.transform(prompts) | |
| self.corpus = prompts | |
| self.corpus_vectors = self.corpus_vectors / np.linalg.norm(self.corpus_vectors, axis=1, keepdims=True) | |
| d = self.corpus_vectors.shape[1] | |
| self.index = faiss.IndexFlatIP(d) | |
| self.index.add(self.corpus_vectors.astype('float32')) | |
| def most_similar(self, query: str, n: int = 5) -> List[Tuple[float, str]]: | |
| """ | |
| TODO | |
| """ | |
| query_vector = self.vectorizer.transform([query]).astype('float32') | |
| query_vector = query_vector / np.linalg.norm(query_vector) | |
| distances, indices = self.index.search(query_vector, n) | |
| return [(distances[0][i], self.corpus[indices[0][i]]) for i in range(n)] | |