Spaces:
Sleeping
Sleeping
Commit
·
c16cb4b
1
Parent(s):
d1c139b
:tada: first commit
Browse files- app.py +169 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import einops
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from torchvision.transforms import ToPILImage
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import os
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
+
|
| 13 |
+
############################## RATIONAL BEHIND ###############################
|
| 14 |
+
|
| 15 |
+
# Load the model, tokenizer, and image processor with error handling
|
| 16 |
+
def load_model_and_components(model_name):
|
| 17 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 19 |
+
image_processor = AutoImageProcessor.from_pretrained(model_name)
|
| 20 |
+
return model, tokenizer, image_processor
|
| 21 |
+
|
| 22 |
+
# Preload both models in parallel
|
| 23 |
+
def preload_models():
|
| 24 |
+
models = {}
|
| 25 |
+
model_names = ["laicsiifes/swin-distilbertimbau"] #, "laicsiifes/swin-gportuguese-2"]
|
| 26 |
+
with ThreadPoolExecutor() as executor:
|
| 27 |
+
results = executor.map(load_model_and_components, model_names)
|
| 28 |
+
for name, result in zip(model_names, results):
|
| 29 |
+
models[name] = result
|
| 30 |
+
return models
|
| 31 |
+
|
| 32 |
+
models = preload_models()
|
| 33 |
+
|
| 34 |
+
# Predefined images for selection
|
| 35 |
+
image_folder = "images"
|
| 36 |
+
predefined_images = [
|
| 37 |
+
Image.open(os.path.join(image_folder, fname)).convert("RGB")
|
| 38 |
+
for fname in os.listdir(image_folder)
|
| 39 |
+
if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.ppm'))
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
# Function to preprocess the image to RGB format
|
| 43 |
+
def preprocess_image(image):
|
| 44 |
+
if image is None:
|
| 45 |
+
return None, None
|
| 46 |
+
pil_image = image.convert("RGB")
|
| 47 |
+
return pil_image, None
|
| 48 |
+
|
| 49 |
+
# Function to process the image in tokens with its attention maps
|
| 50 |
+
def get_attn_map(model, image, processor, tokenizer):
|
| 51 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 52 |
+
model.eval()
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
output = model.generate(
|
| 55 |
+
pixel_values=pixel_values,
|
| 56 |
+
return_dict_in_generate=True,
|
| 57 |
+
output_hidden_states=True,
|
| 58 |
+
output_attentions=True,
|
| 59 |
+
max_length=25,
|
| 60 |
+
num_beams=5
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
last_layers = [tensor_tuple[-1] for tensor_tuple in output.cross_attentions]
|
| 64 |
+
attention_maps = torch.stack(last_layers, dim=0)
|
| 65 |
+
attention_maps = einops.reduce(
|
| 66 |
+
attention_maps,
|
| 67 |
+
'token batch head sequence (height width) -> token sequence (height width)',
|
| 68 |
+
height=7, width=7,
|
| 69 |
+
reduction='mean'
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
tokens = output.sequences[0]
|
| 73 |
+
token_texts = tokenizer.convert_ids_to_tokens(tokens)
|
| 74 |
+
valid_token_texts = token_texts[1:]
|
| 75 |
+
|
| 76 |
+
return valid_token_texts, attention_maps, output
|
| 77 |
+
|
| 78 |
+
# Function to preprocess the captions tokens and attention maps
|
| 79 |
+
# e.g. tokens `sent` and `##ada` yield the word `sentada`
|
| 80 |
+
def join_tokens(text_tokens, attention_maps, connect_symbol='##'):
|
| 81 |
+
tokens = text_tokens.copy()
|
| 82 |
+
attn_map = attention_maps.detach().clone()
|
| 83 |
+
|
| 84 |
+
i = 0
|
| 85 |
+
while i < len(tokens) and tokens[i] != '[SEP]':
|
| 86 |
+
if tokens[i].startswith(connect_symbol):
|
| 87 |
+
tokens[i] = tokens[i - 1] + tokens[i].replace(connect_symbol, '')
|
| 88 |
+
tokens.pop(i - 1)
|
| 89 |
+
attn_map[i][0] = attn_map[i - 1][0] + attn_map[i][0]
|
| 90 |
+
attn_map = torch.cat((attn_map[:i - 1], attn_map[i:]), dim=0)
|
| 91 |
+
i -= 1
|
| 92 |
+
i += 1
|
| 93 |
+
|
| 94 |
+
tokens = tokens[1:i - 1]
|
| 95 |
+
attn_map = attn_map[1:i - 1]
|
| 96 |
+
|
| 97 |
+
return tokens, attn_map
|
| 98 |
+
|
| 99 |
+
# Make the attention maps visually organized and presentable
|
| 100 |
+
def generate_attention_gallery(image, selected_model):
|
| 101 |
+
if image is None:
|
| 102 |
+
return []
|
| 103 |
+
|
| 104 |
+
model, tokenizer, processor = models[selected_model]
|
| 105 |
+
tokens, attention_maps, _ = get_attn_map(model, image, processor, tokenizer)
|
| 106 |
+
joined_tokens, joined_attn_maps = join_tokens(tokens, attention_maps)
|
| 107 |
+
|
| 108 |
+
grid_size = int(joined_attn_maps.size(-1) ** 0.5)
|
| 109 |
+
gallery_output = []
|
| 110 |
+
|
| 111 |
+
for i, token in enumerate(joined_tokens):
|
| 112 |
+
att_map = joined_attn_maps[i].view(grid_size, grid_size)
|
| 113 |
+
att_map = (att_map - att_map.min()) / (att_map.max() - att_map.min())
|
| 114 |
+
|
| 115 |
+
att_map = att_map.repeat_interleave(32, dim=0).repeat_interleave(32, dim=1)
|
| 116 |
+
|
| 117 |
+
att_map_resized = ToPILImage()(
|
| 118 |
+
att_map.unsqueeze(0).repeat(3, 1, 1)
|
| 119 |
+
).resize(image.size[::])
|
| 120 |
+
|
| 121 |
+
blended = Image.blend(image, att_map_resized, alpha=0.75)
|
| 122 |
+
gallery_output.append((blended, token))
|
| 123 |
+
|
| 124 |
+
return gallery_output
|
| 125 |
+
|
| 126 |
+
################################### PAGE ####################################
|
| 127 |
+
|
| 128 |
+
# Define UI
|
| 129 |
+
with gr.Blocks(theme=gr.themes.Citrus(primary_hue="blue", secondary_hue="orange")) as interface:
|
| 130 |
+
gr.Markdown("""
|
| 131 |
+
# Welcome to the LAICSI-IFES Vision Encoder-Decoder Demo
|
| 132 |
+
---
|
| 133 |
+
### Select a pretrained model and upload an image to visualize attention maps.
|
| 134 |
+
""")
|
| 135 |
+
|
| 136 |
+
with gr.Row(variant='panel'):
|
| 137 |
+
model_selector = gr.Dropdown(
|
| 138 |
+
choices=list(models.keys()),
|
| 139 |
+
value="laicsiifes/swin-distilbertimbau",
|
| 140 |
+
label="Select Model"
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
gr.Markdown("""---\n### Upload or select an image and click 'Generate' to view attention maps.""")
|
| 144 |
+
|
| 145 |
+
with gr.Row(variant='panel'):
|
| 146 |
+
with gr.Column():
|
| 147 |
+
image_display = gr.Image(type="pil", label="Image Preview", image_mode="RGB", height=400)
|
| 148 |
+
with gr.Column():
|
| 149 |
+
output_gallery = gr.Gallery(label="Attention Maps", columns=4, rows=3, height=600)
|
| 150 |
+
generate_button = gr.Button("Generate")
|
| 151 |
+
|
| 152 |
+
gr.Markdown("""---""")
|
| 153 |
+
|
| 154 |
+
with gr.Row(variant='panel'):
|
| 155 |
+
examples = gr.Examples(
|
| 156 |
+
examples=predefined_images,
|
| 157 |
+
fn=preprocess_image,
|
| 158 |
+
inputs=[image_display],
|
| 159 |
+
outputs=[image_display, output_gallery],
|
| 160 |
+
label="Examples"
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# Actions
|
| 164 |
+
model_selector.change(fn=lambda: (None, []), outputs=[image_display, output_gallery])
|
| 165 |
+
image_display.upload(fn=preprocess_image, inputs=[image_display], outputs=[image_display, output_gallery])
|
| 166 |
+
image_display.clear(fn=lambda: None, outputs=[output_gallery])
|
| 167 |
+
generate_button.click(fn=generate_attention_gallery, inputs=[image_display, model_selector], outputs=output_gallery)
|
| 168 |
+
|
| 169 |
+
interface.launch(share=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.33.0
|
| 2 |
+
Pillow==9.5.0
|
| 3 |
+
requests==2.31.0
|
| 4 |
+
gradio==3.29.0
|
| 5 |
+
torch==2.0.1
|
| 6 |
+
numpy==1.26.4
|