import torch import einops import matplotlib.pyplot as plt from torchvision.transforms import ToPILImage from PIL import Image import os import math from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel import gradio as gr from concurrent.futures import ThreadPoolExecutor ############################## RATIONAL BEHIND ############################### # Load the model, tokenizer, and image processor with error handling def load_model_and_components(model_name): model = VisionEncoderDecoderModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) image_processor = AutoImageProcessor.from_pretrained(model_name) return model, tokenizer, image_processor # Preload both models in parallel def preload_models(): models = {} model_names = ["laicsiifes/swin-distilbertimbau"] #, "laicsiifes/swin-gportuguese-2"] with ThreadPoolExecutor() as executor: results = executor.map(load_model_and_components, model_names) for name, result in zip(model_names, results): models[name] = result return models models = preload_models() # Predefined images for selection image_folder = "images" predefined_images = [ Image.open(os.path.join(image_folder, fname)).convert("RGB") for fname in os.listdir(image_folder) if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.ppm')) ] # Function to preprocess the image to RGB format def preprocess_image(image): if image is None: return None, None pil_image = image.convert("RGB") return pil_image, None # Function to process the image in tokens with its attention maps def get_attn_map(model, image, processor, tokenizer): pixel_values = processor(image, return_tensors="pt").pixel_values model.eval() with torch.no_grad(): output = model.generate( pixel_values=pixel_values, return_dict_in_generate=True, output_hidden_states=True, output_attentions=True, max_length=25, num_beams=5 ) last_layers = [tensor_tuple[-1] for tensor_tuple in output.cross_attentions] attention_maps = torch.stack(last_layers, dim=0) attention_maps = einops.reduce( attention_maps, 'token batch head sequence (height width) -> token sequence (height width)', height=7, width=7, reduction='mean' ) tokens = output.sequences[0] token_texts = tokenizer.convert_ids_to_tokens(tokens) valid_token_texts = token_texts[1:] return valid_token_texts, attention_maps, output # Function to preprocess the captions tokens and attention maps # e.g. tokens `sent` and `##ada` yield the word `sentada` def join_tokens(text_tokens, attention_maps, connect_symbol='##'): tokens = text_tokens.copy() attn_map = attention_maps.detach().clone() i = 0 while i < len(tokens) and tokens[i] != '[SEP]': if tokens[i].startswith(connect_symbol): tokens[i] = tokens[i - 1] + tokens[i].replace(connect_symbol, '') tokens.pop(i - 1) attn_map[i][0] = attn_map[i - 1][0] + attn_map[i][0] attn_map = torch.cat((attn_map[:i - 1], attn_map[i:]), dim=0) i -= 1 i += 1 tokens = tokens[1:i - 1] attn_map = attn_map[1:i - 1] return tokens, attn_map # Make the attention maps visually organized and presentable def generate_attention_gallery(image, selected_model): if image is None: return [] model, tokenizer, processor = models[selected_model] tokens, attention_maps, _ = get_attn_map(model, image, processor, tokenizer) joined_tokens, joined_attn_maps = join_tokens(tokens, attention_maps) grid_size = int(joined_attn_maps.size(-1) ** 0.5) gallery_output = [] for i, token in enumerate(joined_tokens): att_map = joined_attn_maps[i].view(grid_size, grid_size) att_map = (att_map - att_map.min()) / (att_map.max() - att_map.min()) att_map = att_map.repeat_interleave(32, dim=0).repeat_interleave(32, dim=1) att_map_resized = ToPILImage()( att_map.unsqueeze(0).repeat(3, 1, 1) ).resize(image.size[::]) blended = Image.blend(image, att_map_resized, alpha=0.75) gallery_output.append((blended, token)) return gallery_output ################################### PAGE #################################### # Define UI with gr.Blocks(theme=gr.themes.Citrus(primary_hue="blue", secondary_hue="orange")) as interface: gr.Markdown(""" # Welcome to the LAICSI-IFES Vision Encoder-Decoder Demo --- ### Select a pretrained model and upload an image to visualize attention maps. """) with gr.Row(variant='panel'): model_selector = gr.Dropdown( choices=list(models.keys()), value="laicsiifes/swin-distilbertimbau", label="Select Model" ) gr.Markdown("""---\n### Upload or select an image and click 'Generate' to view attention maps.""") with gr.Row(variant='panel'): with gr.Column(): image_display = gr.Image(type="pil", label="Image Preview", image_mode="RGB", height=400) with gr.Column(): output_gallery = gr.Gallery(label="Attention Maps", columns=4, rows=3, height=600) generate_button = gr.Button("Generate") gr.Markdown("""---""") with gr.Row(variant='panel'): examples = gr.Examples( examples=predefined_images, fn=preprocess_image, inputs=[image_display], outputs=[image_display, output_gallery], label="Examples" ) # Actions model_selector.change(fn=lambda: (None, []), outputs=[image_display, output_gallery]) image_display.upload(fn=preprocess_image, inputs=[image_display], outputs=[image_display, output_gallery]) image_display.clear(fn=lambda: None, outputs=[output_gallery]) generate_button.click(fn=generate_attention_gallery, inputs=[image_display, model_selector], outputs=output_gallery) interface.launch(share=False)