Spaces:
Runtime error
Runtime error
first
Browse files- .gitignore +2 -0
- app.py +141 -0
- requirements.txt +14 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
venv
|
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
|
| 2 |
+
from compel import Compel, ReturnedEmbeddingsType
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
try:
|
| 7 |
+
import intel_extension_for_pytorch as ipex
|
| 8 |
+
except:
|
| 9 |
+
pass
|
| 10 |
+
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import numpy as np
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import psutil
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
| 18 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
| 19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 20 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
| 21 |
+
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
| 22 |
+
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
| 23 |
+
device = torch.device(
|
| 24 |
+
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
| 25 |
+
)
|
| 26 |
+
torch_device = device
|
| 27 |
+
torch_dtype = torch.float16
|
| 28 |
+
|
| 29 |
+
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
| 30 |
+
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
|
| 31 |
+
print(f"device: {device}")
|
| 32 |
+
|
| 33 |
+
if mps_available:
|
| 34 |
+
device = torch.device("mps")
|
| 35 |
+
torch_device = "cpu"
|
| 36 |
+
torch_dtype = torch.float32
|
| 37 |
+
|
| 38 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 39 |
+
|
| 40 |
+
if SAFETY_CHECKER == "True":
|
| 41 |
+
pipe = DiffusionPipeline.from_pretrained(model_id)
|
| 42 |
+
else:
|
| 43 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
|
| 44 |
+
|
| 45 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 46 |
+
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
| 47 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
| 48 |
+
|
| 49 |
+
# check if computer has less than 64GB of RAM using sys or os
|
| 50 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 51 |
+
pipe.enable_attention_slicing()
|
| 52 |
+
|
| 53 |
+
if TORCH_COMPILE:
|
| 54 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 55 |
+
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
| 56 |
+
|
| 57 |
+
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
| 58 |
+
|
| 59 |
+
# Load LCM LoRA
|
| 60 |
+
pipe.load_lora_weights(
|
| 61 |
+
"lcm-sd/lcm-sdxl-lora",
|
| 62 |
+
weight_name="lcm_sdxl_lora.safetensors",
|
| 63 |
+
adapter_name="lcm",
|
| 64 |
+
token=HF_TOKEN,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
compel_proc = Compel(
|
| 68 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 69 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 70 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 71 |
+
requires_pooled=[False, True],
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def predict(
|
| 76 |
+
prompt, guidance, steps, seed=1231231, progress=gr.Progress(track_tqdm=True)
|
| 77 |
+
):
|
| 78 |
+
generator = torch.manual_seed(seed)
|
| 79 |
+
prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)
|
| 80 |
+
|
| 81 |
+
results = pipe(
|
| 82 |
+
prompt_embeds=prompt_embeds,
|
| 83 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 84 |
+
generator=generator,
|
| 85 |
+
num_inference_steps=steps,
|
| 86 |
+
guidance_scale=guidance,
|
| 87 |
+
width=1024,
|
| 88 |
+
height=1024,
|
| 89 |
+
# original_inference_steps=params.lcm_steps,
|
| 90 |
+
output_type="pil",
|
| 91 |
+
)
|
| 92 |
+
nsfw_content_detected = (
|
| 93 |
+
results.nsfw_content_detected[0]
|
| 94 |
+
if "nsfw_content_detected" in results
|
| 95 |
+
else False
|
| 96 |
+
)
|
| 97 |
+
if nsfw_content_detected:
|
| 98 |
+
raise gr.Error("NSFW content detected.")
|
| 99 |
+
return results.images[0]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
css = """
|
| 103 |
+
#container{
|
| 104 |
+
margin: 0 auto;
|
| 105 |
+
max-width: 50rem;
|
| 106 |
+
}
|
| 107 |
+
#intro{
|
| 108 |
+
max-width: 32rem;
|
| 109 |
+
text-align: center;
|
| 110 |
+
margin: 0 auto;
|
| 111 |
+
}
|
| 112 |
+
"""
|
| 113 |
+
with gr.Blocks(css=css) as demo:
|
| 114 |
+
with gr.Column(elem_id="container"):
|
| 115 |
+
gr.Markdown(
|
| 116 |
+
"""# Ultra-Fast SDXL with LoRAs borrowed from Latent Consistency Models
|
| 117 |
+
|
| 118 |
+
""",
|
| 119 |
+
elem_id="intro",
|
| 120 |
+
)
|
| 121 |
+
with gr.Row():
|
| 122 |
+
with gr.Row():
|
| 123 |
+
prompt = gr.Textbox(
|
| 124 |
+
placeholder="Insert your prompt here", scale=5, container=False
|
| 125 |
+
)
|
| 126 |
+
generate_bt = gr.Button("Generate", scale=1)
|
| 127 |
+
with gr.Accordion("Advanced options", open=False):
|
| 128 |
+
guidance = gr.Slider(
|
| 129 |
+
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
|
| 130 |
+
)
|
| 131 |
+
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
|
| 132 |
+
seed = gr.Slider(
|
| 133 |
+
randomize=True, minimum=0, maximum=12013012031030, label="Seed"
|
| 134 |
+
)
|
| 135 |
+
image = gr.Image(type="filepath")
|
| 136 |
+
|
| 137 |
+
inputs = [prompt, guidance, steps, seed]
|
| 138 |
+
generate_bt.click(fn=predict, inputs=inputs, outputs=image)
|
| 139 |
+
|
| 140 |
+
demo.queue()
|
| 141 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# diffusers==0.22.2
|
| 2 |
+
git+https://github.com/huggingface/diffusers.git@6110d7c95f630479cf01340cc8a8141c1e359f09
|
| 3 |
+
transformers==4.34.1
|
| 4 |
+
gradio==4.1.2
|
| 5 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 6 |
+
torch==2.1.0
|
| 7 |
+
fastapi==0.104.0
|
| 8 |
+
uvicorn==0.23.2
|
| 9 |
+
Pillow==10.1.0
|
| 10 |
+
accelerate==0.24.0
|
| 11 |
+
compel==2.0.2
|
| 12 |
+
controlnet-aux==0.0.7
|
| 13 |
+
peft==0.6.0
|
| 14 |
+
bitsandbytes
|