import gradio as gr, os, json from nlp_utils import transcribe_audio, summarize, extract_actions_decisions, make_minutes_md OUT_DIR = "outputs" os.makedirs(OUT_DIR, exist_ok=True) def process(audio_file, transcript_text, meeting_title): text = "" if audio_file is not None: text = transcribe_audio(audio_file) if transcript_text and transcript_text.strip(): extra = transcript_text.strip() text = (text + "\n" + extra).strip() if text else extra if not text or len(text) < 40: return "Please upload audio OR paste a transcript (≥ 40 characters).", "", [], [], None resum = summarize(text) ed = extract_actions_decisions(text) actions = ed.get("actions", []) decisions = ed.get("decisions", []) title = meeting_title or "Meeting" md = make_minutes_md(title, resum, actions, decisions) md_path = os.path.join(OUT_DIR, "minutes.md") with open(md_path, "w", encoding="utf-8") as f: f.write(md) actions_ht = [(a, "Action") for a in actions] if actions else [] decisions_ht = [(d, "Decision") for d in decisions] if decisions else [] return "Done ✅", resum, actions_ht, decisions_ht, md_path with gr.Blocks(title="MeetingNotes AI — Meeting Summarizer") as demo: gr.Markdown("# MeetingNotes AI — Meeting Summarizer") gr.Markdown("Upload **audio** or **paste a transcript**, then click **Analyze**. Multilingual audio supported (EN/FR).") with gr.Row(): with gr.Column(): meeting_title = gr.Textbox(label="Meeting Title", value="Product Launch — Weekly") audio = gr.Audio(label="Audio (mp3/wav)", sources=["upload"], type="filepath") transcript = gr.Textbox(label="Transcript (optional if audio)", lines=10, placeholder="Paste here…") btn = gr.Button("Analyze") with gr.Column(): status = gr.Textbox(label="Status") resume = gr.Textbox(label="Summary", lines=8) actions = gr.HighlightedText(label="Action Items", combine_adjacent=True) decisions = gr.HighlightedText(label="Decisions", combine_adjacent=True) files = gr.File(label="Download minutes.md") btn.click(process, inputs=[audio, transcript, meeting_title], outputs=[status, resume, actions, decisions, files]) if __name__ == "__main__": demo.launch()