Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from ultralytics import YOLO | |
| import cv2 | |
| import numpy as np | |
| # Load the YOLOv8 model | |
| model = YOLO("yolov8n.pt") # Replace with your trained brain tumor model | |
| def predict(image_path): | |
| # Run YOLOv8 inference | |
| results = model(image_path) | |
| # Get annotated image | |
| annotated_frame = results[0].plot() | |
| # Convert BGR to RGB | |
| annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) | |
| # Check if a tumor is detected | |
| tumor_detected = len(results[0].boxes) > 0 | |
| detection_message = "Tumor Detected!" if tumor_detected else "No Tumor Detected." | |
| return annotated_frame_rgb, detection_message | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="filepath", label="Upload MRI Image"), | |
| outputs=[ | |
| gr.Image(label="Detection Result"), | |
| gr.Textbox(label="Diagnosis") | |
| ], | |
| title="Brain Tumor Detection with YOLOv8", | |
| description="Upload an MRI scan to detect brain tumors using AI.", | |
| allow_flagging="never" | |
| ) | |
| interface.launch() |