AI_Detector / app.py
mahmoudsaber0's picture
Update app.py
bcab1b7 verified
raw
history blame
1.86 kB
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import uvicorn
app = FastAPI(title="AI Detector API")
# Load the model once at startup
MODEL_NAME = "roberta-base-openai-detector"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
model.eval()
def get_ai_probability(text: str) -> float:
"""Return AI probability (0–100%) for the given text."""
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.softmax(logits, dim=1)
ai_score = probs[0][1].item() * 100
return round(ai_score, 2)
@app.post("/analyze")
async def analyze_text(request: Request):
"""
Example body:
{
"text": "Your text here"
}
"""
data = await request.json()
text = data.get("text", "").strip()
if not text:
return {"error": "No text provided"}
paragraphs = [p.strip() for p in text.split("\n") if p.strip()]
results = []
for i, para in enumerate(paragraphs, start=1):
ai_score = get_ai_probability(para)
results.append({
"paragraph": i,
"ai_score": ai_score,
"human_score": round(100 - ai_score, 2),
"content_preview": para[:200] + ("..." if len(para) > 200 else "")
})
overall = sum([r["ai_score"] for r in results]) / len(results)
return {
"overall_ai_score": round(overall, 2),
"overall_human_score": round(100 - overall, 2),
"paragraphs": results
}
@app.get("/")
async def root():
return {"message": "AI Detector API is running. Use POST /analyze"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)