Spaces:
Running
Running
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| model_path = "modernbert.bin" | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base") | |
| model = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) | |
| model.load_state_dict(torch.load(model_path, map_location=device)) | |
| model.to(device) | |
| model.eval() | |
| label_mapping = { | |
| 0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b', | |
| 6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b', | |
| 11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small', | |
| 14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it', | |
| 18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o', | |
| 22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b', | |
| 27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b', | |
| 31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b', | |
| 35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b', | |
| 39: 'text-davinci-002', 40: 'text-davinci-003' | |
| } | |
| def classify_text(text): | |
| inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
| inputs = {key: value.to(device) for key, value in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| probabilities = torch.softmax(outputs.logits, dim=1)[0] | |
| predicted_class = torch.argmax(probabilities).item() | |
| confidence = probabilities[predicted_class].item() | |
| if predicted_class == 24: | |
| prediction_label = "β **Human Written**" | |
| confidence_message = f"π **Confidence:** {confidence:.2f}" | |
| if confidence > 0.8: | |
| confidence_message += " (Highly Likely Human)" | |
| else: | |
| prediction_label = f"π€ **AI Generated by {label_mapping[predicted_class]}**" | |
| confidence_message = f"π **Confidence:** {confidence:.2f}" | |
| if confidence > 0.8: | |
| confidence_message += " (Highly Likely AI)" | |
| return f"**Result:**\n\n{prediction_label}\n\n{confidence_message}" | |
| title = "π§ SzegedAI ModernBERT Text Detector" | |
| description = ( | |
| """ | |
| **AI Detection Tool by SzegedAI** | |
| **Detect AI-generated texts with precision.** This tool uses the new **ModernBERT** model, fine-tuned for machine-generated text detection, and able to detect 40 different models. | |
| - **π€ Identify AI Models**: If detected as AI-generated, the system will reveal which LLM was responsible for the text generation. | |
| - **β Human Verification**: If confidently human, the result will be marked with a **green checkmark**. | |
| **Press the button below to classify your text!** | |
| """ | |
| ) | |
| iface = gr.Interface( | |
| fn=classify_text, | |
| inputs=gr.Textbox( | |
| label="βοΈ Enter Text for Analysis", | |
| placeholder="Type or paste your content here...", | |
| lines=5, | |
| elem_id="text_input_box" | |
| ), | |
| outputs=gr.Textbox( | |
| label="Detection Results", | |
| lines=4, | |
| elem_id="result_output_box" | |
| ), | |
| title=title, | |
| description=description, | |
| theme="dark", | |
| allow_flagging="never", | |
| live=False, | |
| submit_button="π― Analyze Now", | |
| css=""" | |
| #text_input_box, #result_output_box { | |
| border-radius: 10px; | |
| border: 2px solid #4CAF50; | |
| font-size: 18px; | |
| } | |
| body { | |
| background: #1E1E2F; | |
| color: #E1E1E6; | |
| font-family: 'Aptos', sans-serif; | |
| padding: 20px; | |
| } | |
| .gradio-container { | |
| border: 2px solid #4CAF50; | |
| border-radius: 15px; | |
| padding: 20px; | |
| box-shadow: 0px 0px 20px rgba(0,255,0,0.6); | |
| } | |
| h1, h2 { | |
| text-align: center; | |
| font-size: 32px; | |
| font-weight: bold; | |
| } | |
| """ | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch(share=True) | |