Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,43 +4,21 @@ import torch
|
|
| 4 |
import logging
|
| 5 |
import gc
|
| 6 |
import sys
|
| 7 |
-
import
|
| 8 |
from fastapi import FastAPI, HTTPException
|
| 9 |
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
from pydantic import BaseModel
|
| 11 |
from typing import Dict, List, Optional
|
| 12 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
from tokenizers.normalizers import Sequence, Replace, Strip
|
| 14 |
from tokenizers import Regex
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# =====================================================
|
| 18 |
-
# 🛠️ Monkey Patch for Docker/Container UID Issue
|
| 19 |
-
# =====================================================
|
| 20 |
-
# Fix for 'getpwuid(): uid not found: 1000' in containerized environments
|
| 21 |
-
def patched_getpwuid(uid_num):
|
| 22 |
-
try:
|
| 23 |
-
return original_getpwuid(uid_num)
|
| 24 |
-
except KeyError:
|
| 25 |
-
if uid_num == os.getuid():
|
| 26 |
-
# Create fake user entry
|
| 27 |
-
return pwd.struct_pwent(
|
| 28 |
-
name='dockeruser',
|
| 29 |
-
passwd='x',
|
| 30 |
-
uid=uid_num,
|
| 31 |
-
gid=os.getgid(),
|
| 32 |
-
gecos='Docker User',
|
| 33 |
-
dir='/tmp',
|
| 34 |
-
shell='/bin/sh'
|
| 35 |
-
)
|
| 36 |
-
raise
|
| 37 |
-
|
| 38 |
-
original_getpwuid = pwd.getpwuid
|
| 39 |
-
pwd.getpwuid = patched_getpwuid
|
| 40 |
-
|
| 41 |
-
# Set fallback env vars to avoid user-dependent paths
|
| 42 |
-
os.environ.setdefault('HOME', '/tmp')
|
| 43 |
-
os.environ.setdefault('USER', 'dockeruser')
|
| 44 |
|
| 45 |
# =====================================================
|
| 46 |
# 🔧 تكوين البيئة والإعدادات
|
|
@@ -55,14 +33,15 @@ logger = logging.getLogger(__name__)
|
|
| 55 |
CACHE_DIR = "/tmp/huggingface_cache"
|
| 56 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 57 |
|
| 58 |
-
# تكوين متغيرات البيئة لـ Hugging Face
|
| 59 |
os.environ.update({
|
| 60 |
"HF_HOME": CACHE_DIR,
|
|
|
|
| 61 |
"HF_DATASETS_CACHE": CACHE_DIR,
|
| 62 |
"HUGGINGFACE_HUB_CACHE": CACHE_DIR,
|
| 63 |
"TORCH_HOME": CACHE_DIR,
|
| 64 |
-
"TOKENIZERS_PARALLELISM": "false",
|
| 65 |
-
"TRANSFORMERS_OFFLINE": "0",
|
| 66 |
})
|
| 67 |
|
| 68 |
# إعدادات PyTorch للذاكرة
|
|
@@ -96,282 +75,574 @@ label_mapping = {
|
|
| 96 |
}
|
| 97 |
|
| 98 |
# =====================================================
|
| 99 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
# =====================================================
|
| 101 |
-
class
|
| 102 |
def __init__(self):
|
| 103 |
-
self.
|
| 104 |
-
self.
|
|
|
|
|
|
|
| 105 |
self.models_loaded = False
|
| 106 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 107 |
"https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12",
|
| 108 |
"https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
|
| 109 |
]
|
| 110 |
-
self.base_model_id = "answerdotai/ModernBERT-base" # Primary
|
| 111 |
-
self.fallback_model_id = "bert-base-uncased" # Fallback if ModernBERT fails
|
| 112 |
-
self.using_fallback = False
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
try:
|
| 117 |
-
logger.info(
|
| 118 |
-
self.
|
| 119 |
-
|
| 120 |
cache_dir=CACHE_DIR,
|
| 121 |
use_fast=True,
|
| 122 |
trust_remote_code=False
|
| 123 |
)
|
| 124 |
-
logger.info("✅ Primary tokenizer loaded successfully")
|
| 125 |
|
| 126 |
-
|
| 127 |
-
logger.warning(f"⚠️ Failed to load primary tokenizer: {e}")
|
| 128 |
try:
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
# إعداد معالج النصوص
|
| 143 |
-
try:
|
| 144 |
-
newline_to_space = Replace(Regex(r'\s*\n\s*'), " ")
|
| 145 |
-
join_hyphen_break = Replace(Regex(r'(\w+)[--]\s*\n\s*(\w+)'), r"\1\2")
|
| 146 |
-
self.tokenizer.backend_tokenizer.normalizer = Sequence([
|
| 147 |
-
self.tokenizer.backend_tokenizer.normalizer,
|
| 148 |
-
join_hyphen_break,
|
| 149 |
-
newline_to_space,
|
| 150 |
-
Strip()
|
| 151 |
-
])
|
| 152 |
except Exception as e:
|
| 153 |
-
logger.
|
| 154 |
-
|
| 155 |
-
return True
|
| 156 |
|
| 157 |
-
def
|
| 158 |
-
"""تحميل موديل واحد
|
| 159 |
-
base_model = None
|
| 160 |
try:
|
| 161 |
-
logger.info(f"🤖 Loading
|
| 162 |
|
| 163 |
-
# محاولة تحميل الموديل الأساسي الرئيسي
|
| 164 |
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 165 |
-
|
| 166 |
num_labels=41,
|
| 167 |
cache_dir=CACHE_DIR,
|
| 168 |
-
|
| 169 |
low_cpu_mem_usage=True,
|
| 170 |
trust_remote_code=False
|
| 171 |
)
|
| 172 |
-
logger.info("✅ Primary base model loaded")
|
| 173 |
|
| 174 |
-
except Exception as e:
|
| 175 |
-
logger.warning(f"⚠️ Failed to load primary base model: {e}")
|
| 176 |
-
try:
|
| 177 |
-
logger.info(f"🔄 Falling back to {self.fallback_model_id}...")
|
| 178 |
-
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 179 |
-
self.fallback_model_id,
|
| 180 |
-
num_labels=41,
|
| 181 |
-
cache_dir=CACHE_DIR,
|
| 182 |
-
dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # Updated from torch_dtype
|
| 183 |
-
low_cpu_mem_usage=True,
|
| 184 |
-
trust_remote_code=False
|
| 185 |
-
)
|
| 186 |
-
self.using_fallback = True
|
| 187 |
-
logger.info("✅ Fallback base model loaded (note: weights may not be compatible)")
|
| 188 |
-
except Exception as fallback_e:
|
| 189 |
-
logger.error(f"❌ Failed to load fallback base model: {fallback_e}")
|
| 190 |
-
return None
|
| 191 |
-
|
| 192 |
-
# محاولة تحميل الأوزان (فقط إذا لم نستخدم fallback، أو إذا كانت متوافقة)
|
| 193 |
-
try:
|
| 194 |
if model_path and os.path.exists(model_path):
|
| 195 |
logger.info(f"📁 Loading from local file: {model_path}")
|
| 196 |
state_dict = torch.load(model_path, map_location=device, weights_only=True)
|
| 197 |
base_model.load_state_dict(state_dict, strict=False)
|
| 198 |
elif model_url:
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
)
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
# نقل الموديل للجهاز المناسب
|
| 224 |
-
model = base_model.to(device)
|
| 225 |
-
model.eval()
|
| 226 |
-
|
| 227 |
-
# تنظيف الذاكرة
|
| 228 |
-
if 'state_dict' in locals():
|
| 229 |
-
del state_dict
|
| 230 |
-
gc.collect()
|
| 231 |
-
if torch.cuda.is_available():
|
| 232 |
-
torch.cuda.empty_cache()
|
| 233 |
-
|
| 234 |
-
logger.info(f"✅ {model_name} loaded successfully (fallback: {self.using_fallback})")
|
| 235 |
-
return model
|
| 236 |
-
|
| 237 |
-
def load_models(self, max_models=3): # Increased default to 3 to load local + 2 URLs
|
| 238 |
-
"""تحميل الموديلات بحد أقصى للذاكرة"""
|
| 239 |
if self.models_loaded:
|
| 240 |
logger.info("✨ Models already loaded")
|
| 241 |
return True
|
| 242 |
|
| 243 |
-
#
|
| 244 |
-
if not self.
|
| 245 |
-
logger.error("❌ Tokenizer load failed - cannot proceed")
|
| 246 |
return False
|
| 247 |
|
| 248 |
-
#
|
| 249 |
-
logger.info(f"🚀 Loading up to {
|
| 250 |
|
| 251 |
-
#
|
| 252 |
-
|
| 253 |
-
if os.path.exists(
|
| 254 |
-
model = self.
|
| 255 |
-
model_path=
|
| 256 |
-
model_name="
|
| 257 |
)
|
| 258 |
if model is not None:
|
| 259 |
-
self.
|
| 260 |
|
| 261 |
-
#
|
| 262 |
-
for i,
|
| 263 |
-
if len(self.
|
| 264 |
break
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
model_name=f"Model {len(self.models) + 1}"
|
| 270 |
)
|
| 271 |
if model is not None:
|
| 272 |
-
self.
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
# إيقاف التحميل إذا كانت الذاكرة ممتلئة
|
| 281 |
-
if mem_allocated > 6: # حد أقصى 6GB
|
| 282 |
-
logger.warning("⚠️ Memory limit reached, stopping model loading")
|
| 283 |
-
break
|
| 284 |
|
| 285 |
-
#
|
| 286 |
-
|
|
|
|
| 287 |
self.models_loaded = True
|
| 288 |
-
logger.info(f"✅
|
| 289 |
return True
|
| 290 |
else:
|
| 291 |
logger.error("❌ No models could be loaded")
|
| 292 |
return False
|
| 293 |
|
| 294 |
-
def
|
| 295 |
-
"""
|
| 296 |
-
if not self.models_loaded or len(self.models) == 0:
|
| 297 |
-
raise ValueError("No models loaded")
|
| 298 |
-
|
| 299 |
-
# تنظيف النص
|
| 300 |
-
cleaned_text = clean_text(text)
|
| 301 |
-
if not cleaned_text.strip():
|
| 302 |
-
raise ValueError("Empty text after cleaning")
|
| 303 |
-
|
| 304 |
-
# Tokenization (max_length adjusted for fallback BERT if needed)
|
| 305 |
-
max_len = 512 if not self.using_fallback else 512 # BERT max is 512
|
| 306 |
try:
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
cleaned_text,
|
| 309 |
return_tensors="pt",
|
| 310 |
truncation=True,
|
| 311 |
-
max_length=
|
| 312 |
padding=True
|
| 313 |
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
except Exception as e:
|
| 315 |
-
logger.error(f"
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
try:
|
| 324 |
-
logits = model(**inputs).logits
|
| 325 |
-
probs = torch.softmax(logits, dim=1)
|
| 326 |
-
all_probabilities.append(probs)
|
| 327 |
-
except Exception as e:
|
| 328 |
-
logger.warning(f"Model {i+1} prediction failed: {e}")
|
| 329 |
-
continue
|
| 330 |
|
| 331 |
-
|
| 332 |
-
raise ValueError("All models failed to make predictions")
|
| 333 |
|
| 334 |
-
#
|
| 335 |
-
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
|
|
|
| 343 |
|
| 344 |
-
#
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
| 352 |
|
| 353 |
-
#
|
| 354 |
-
|
| 355 |
-
|
|
|
|
|
|
|
| 356 |
|
| 357 |
-
#
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
"
|
| 363 |
-
|
| 364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
-
return
|
| 367 |
-
"human_percentage": round(human_percentage, 2),
|
| 368 |
-
"ai_percentage": round(ai_percentage, 2),
|
| 369 |
-
"predicted_model": predicted_model,
|
| 370 |
-
"top_5_predictions": top_5_results,
|
| 371 |
-
"is_human": human_percentage > ai_percentage,
|
| 372 |
-
"models_used": len(all_probabilities),
|
| 373 |
-
"using_fallback": self.using_fallback
|
| 374 |
-
}
|
| 375 |
|
| 376 |
# =====================================================
|
| 377 |
# 🧹 دوال التنظيف والمعالجة
|
|
@@ -391,12 +662,12 @@ def split_into_paragraphs(text: str) -> List[str]:
|
|
| 391 |
# 🌐 FastAPI Application
|
| 392 |
# =====================================================
|
| 393 |
app = FastAPI(
|
| 394 |
-
title="ModernBERT AI
|
| 395 |
-
description="
|
| 396 |
-
version="
|
| 397 |
)
|
| 398 |
|
| 399 |
-
# إضافة CORS
|
| 400 |
app.add_middleware(
|
| 401 |
CORSMiddleware,
|
| 402 |
allow_origins=["*"],
|
|
@@ -405,8 +676,8 @@ app.add_middleware(
|
|
| 405 |
allow_headers=["*"],
|
| 406 |
)
|
| 407 |
|
| 408 |
-
# إنشاء مدير الموديلات
|
| 409 |
-
model_manager =
|
| 410 |
|
| 411 |
# =====================================================
|
| 412 |
# 📝 نماذج البيانات (Pydantic Models)
|
|
@@ -414,11 +685,12 @@ model_manager = ModelManager()
|
|
| 414 |
class TextInput(BaseModel):
|
| 415 |
text: str
|
| 416 |
analyze_paragraphs: Optional[bool] = False
|
|
|
|
| 417 |
|
| 418 |
class SimpleTextInput(BaseModel):
|
| 419 |
text: str
|
| 420 |
|
| 421 |
-
class
|
| 422 |
success: bool
|
| 423 |
code: int
|
| 424 |
message: str
|
|
@@ -431,33 +703,46 @@ class DetectionResult(BaseModel):
|
|
| 431 |
async def startup_event():
|
| 432 |
"""تحميل الموديلات عند بداية التشغيل"""
|
| 433 |
logger.info("=" * 50)
|
| 434 |
-
logger.info("🚀 Starting ModernBERT AI Detector...")
|
| 435 |
logger.info(f"🐍 Python version: {sys.version}")
|
| 436 |
logger.info(f"🔥 PyTorch version: {torch.__version__}")
|
| 437 |
-
import transformers
|
| 438 |
-
logger.info(f"🔧 Transformers version: {transformers.__version__}")
|
| 439 |
-
logger.info("🛡️ UID Monkey Patch Applied (for Docker/Container)")
|
| 440 |
logger.info("=" * 50)
|
| 441 |
|
| 442 |
-
#
|
| 443 |
-
|
| 444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
|
| 446 |
if success:
|
| 447 |
-
logger.info(
|
| 448 |
else:
|
| 449 |
logger.error("⚠️ Failed to load models - API will return errors")
|
| 450 |
-
logger.info("💡 Tip: Ensure 'transformers>=4.45.0' and 'huggingface_hub' are installed. Run: pip install --upgrade transformers huggingface_hub")
|
| 451 |
|
| 452 |
@app.get("/")
|
| 453 |
async def root():
|
| 454 |
"""الصفحة الرئيسية"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
return {
|
| 456 |
-
"message": "ModernBERT AI Text Detector API",
|
| 457 |
"status": "online" if model_manager.models_loaded else "initializing",
|
| 458 |
-
"
|
| 459 |
-
"using_fallback": model_manager.using_fallback,
|
| 460 |
"device": str(device),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
"endpoints": {
|
| 462 |
"analyze": "/analyze",
|
| 463 |
"simple": "/analyze-simple",
|
|
@@ -478,112 +763,111 @@ async def health_check():
|
|
| 478 |
|
| 479 |
return {
|
| 480 |
"status": "healthy" if model_manager.models_loaded else "unhealthy",
|
| 481 |
-
"
|
| 482 |
-
"
|
|
|
|
| 483 |
"device": str(device),
|
| 484 |
"cuda_available": torch.cuda.is_available(),
|
| 485 |
"memory_info": memory_info
|
| 486 |
}
|
| 487 |
|
| 488 |
-
@app.post("/analyze", response_model=
|
| 489 |
-
async def
|
| 490 |
"""
|
| 491 |
-
|
| 492 |
-
يحاكي نفس وظيفة Gradio classify_text
|
| 493 |
"""
|
| 494 |
try:
|
| 495 |
-
#
|
| 496 |
text = data.text.strip()
|
| 497 |
if not text:
|
| 498 |
-
return
|
| 499 |
success=False,
|
| 500 |
code=400,
|
| 501 |
message="Empty input text",
|
| 502 |
data={}
|
| 503 |
)
|
| 504 |
|
| 505 |
-
#
|
| 506 |
if not model_manager.models_loaded:
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
return DetectionResult(
|
| 510 |
success=False,
|
| 511 |
code=503,
|
| 512 |
-
message="Models not available
|
| 513 |
data={}
|
| 514 |
)
|
| 515 |
|
| 516 |
-
#
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
# التحليل الأساسي
|
| 520 |
-
result = model_manager.classify_text(text)
|
| 521 |
|
| 522 |
-
#
|
| 523 |
-
|
| 524 |
-
|
|
|
|
| 525 |
ai_words = int(total_words * (ai_percentage / 100))
|
| 526 |
|
| 527 |
-
#
|
| 528 |
paragraphs_analysis = []
|
| 529 |
-
if data.analyze_paragraphs
|
| 530 |
paragraphs = split_into_paragraphs(text)
|
| 531 |
-
|
| 532 |
-
recalc_total_words = 0
|
| 533 |
-
|
| 534 |
-
for para in paragraphs[:10]: # حد أقصى 10 فقرات
|
| 535 |
if para.strip():
|
| 536 |
try:
|
| 537 |
-
para_result = model_manager.
|
| 538 |
para_words = len(para.split())
|
| 539 |
-
recalc_total_words += para_words
|
| 540 |
-
recalc_ai_words += para_words * (para_result["ai_percentage"] / 100)
|
| 541 |
|
| 542 |
paragraphs_analysis.append({
|
| 543 |
"paragraph": para[:200] + "..." if len(para) > 200 else para,
|
| 544 |
-
"ai_generated_score": para_result["ai_percentage"] / 100,
|
| 545 |
-
"human_written_score": para_result["human_percentage"] / 100,
|
| 546 |
-
"predicted_model": para_result["predicted_model"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
})
|
| 548 |
except Exception as e:
|
| 549 |
logger.warning(f"Failed to analyze paragraph: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
| 551 |
-
#
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
|
|
|
|
|
|
| 556 |
|
| 557 |
-
#
|
| 558 |
-
if
|
| 559 |
-
|
| 560 |
-
else:
|
| 561 |
-
feedback = "Most of Your Text Appears Human-Written"
|
| 562 |
|
| 563 |
-
|
| 564 |
-
return DetectionResult(
|
| 565 |
success=True,
|
| 566 |
code=200,
|
| 567 |
-
message="analysis completed",
|
| 568 |
-
data=
|
| 569 |
-
"fakePercentage": ai_percentage,
|
| 570 |
-
"isHuman": human_percentage,
|
| 571 |
-
"textWords": total_words,
|
| 572 |
-
"aiWords": ai_words,
|
| 573 |
-
"paragraphs": paragraphs_analysis,
|
| 574 |
-
"predicted_model": result["predicted_model"],
|
| 575 |
-
"feedback": feedback,
|
| 576 |
-
"input_text": text[:500] + "..." if len(text) > 500 else text,
|
| 577 |
-
"detected_language": "en",
|
| 578 |
-
"top_5_predictions": result.get("top_5_predictions", []),
|
| 579 |
-
"models_used": result.get("models_used", 1),
|
| 580 |
-
"using_fallback": result.get("using_fallback", False)
|
| 581 |
-
}
|
| 582 |
)
|
| 583 |
|
| 584 |
except Exception as e:
|
| 585 |
logger.error(f"Analysis error: {e}", exc_info=True)
|
| 586 |
-
return
|
| 587 |
success=False,
|
| 588 |
code=500,
|
| 589 |
message=f"Analysis failed: {str(e)}",
|
|
@@ -593,7 +877,7 @@ async def analyze_text(data: TextInput):
|
|
| 593 |
@app.post("/analyze-simple")
|
| 594 |
async def analyze_simple(data: SimpleTextInput):
|
| 595 |
"""
|
| 596 |
-
|
| 597 |
"""
|
| 598 |
try:
|
| 599 |
text = data.text.strip()
|
|
@@ -601,18 +885,20 @@ async def analyze_simple(data: SimpleTextInput):
|
|
| 601 |
raise HTTPException(status_code=400, detail="Empty text")
|
| 602 |
|
| 603 |
if not model_manager.models_loaded:
|
| 604 |
-
if not model_manager.
|
| 605 |
raise HTTPException(status_code=503, detail="Models not available")
|
| 606 |
|
| 607 |
-
result = model_manager.
|
|
|
|
| 608 |
|
| 609 |
return {
|
| 610 |
-
"is_ai":
|
| 611 |
-
"ai_score":
|
| 612 |
-
"human_score":
|
| 613 |
-
"detected_model":
|
| 614 |
-
"confidence":
|
| 615 |
-
"
|
|
|
|
| 616 |
}
|
| 617 |
|
| 618 |
except HTTPException:
|
|
@@ -627,21 +913,21 @@ async def analyze_simple(data: SimpleTextInput):
|
|
| 627 |
if __name__ == "__main__":
|
| 628 |
import uvicorn
|
| 629 |
|
| 630 |
-
# الحصول على الإعدادات من البيئة
|
| 631 |
port = int(os.environ.get("PORT", 8000))
|
| 632 |
host = os.environ.get("HOST", "0.0.0.0")
|
| 633 |
workers = int(os.environ.get("WORKERS", 1))
|
| 634 |
|
| 635 |
logger.info("=" * 50)
|
| 636 |
-
logger.info(f"🌐 Starting server on {host}:{port}")
|
| 637 |
logger.info(f"👷 Workers: {workers}")
|
| 638 |
logger.info(f"📚 Documentation: http://{host}:{port}/docs")
|
| 639 |
logger.info("=" * 50)
|
| 640 |
|
| 641 |
uvicorn.run(
|
| 642 |
-
"
|
| 643 |
host=host,
|
| 644 |
port=port,
|
|
|
|
| 645 |
workers=workers,
|
| 646 |
-
|
| 647 |
)
|
|
|
|
| 4 |
import logging
|
| 5 |
import gc
|
| 6 |
import sys
|
| 7 |
+
import numpy as np
|
| 8 |
from fastapi import FastAPI, HTTPException
|
| 9 |
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
from pydantic import BaseModel
|
| 11 |
from typing import Dict, List, Optional
|
| 12 |
+
from transformers import (
|
| 13 |
+
AutoTokenizer,
|
| 14 |
+
AutoModelForSequenceClassification,
|
| 15 |
+
AutoModelForCausalLM,
|
| 16 |
+
pipeline
|
| 17 |
+
)
|
| 18 |
from tokenizers.normalizers import Sequence, Replace, Strip
|
| 19 |
from tokenizers import Regex
|
| 20 |
+
import math
|
| 21 |
+
from collections import Counter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# =====================================================
|
| 24 |
# 🔧 تكوين البيئة والإعدادات
|
|
|
|
| 33 |
CACHE_DIR = "/tmp/huggingface_cache"
|
| 34 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 35 |
|
| 36 |
+
# تكوين متغيرات البيئة لـ Hugging Face
|
| 37 |
os.environ.update({
|
| 38 |
"HF_HOME": CACHE_DIR,
|
| 39 |
+
"TRANSFORMERS_CACHE": CACHE_DIR,
|
| 40 |
"HF_DATASETS_CACHE": CACHE_DIR,
|
| 41 |
"HUGGINGFACE_HUB_CACHE": CACHE_DIR,
|
| 42 |
"TORCH_HOME": CACHE_DIR,
|
| 43 |
+
"TOKENIZERS_PARALLELISM": "false",
|
| 44 |
+
"TRANSFORMERS_OFFLINE": "0",
|
| 45 |
})
|
| 46 |
|
| 47 |
# إعدادات PyTorch للذاكرة
|
|
|
|
| 75 |
}
|
| 76 |
|
| 77 |
# =====================================================
|
| 78 |
+
# 📈 حسابات Perplexity و Burstiness
|
| 79 |
+
# =====================================================
|
| 80 |
+
class TextMetrics:
|
| 81 |
+
"""حساب المقاييس الإحصائية للنص"""
|
| 82 |
+
|
| 83 |
+
@staticmethod
|
| 84 |
+
def calculate_perplexity(text: str, model=None, tokenizer=None):
|
| 85 |
+
"""
|
| 86 |
+
حساب Perplexity - قياس مدى "تفاجؤ" الموديل بالنص
|
| 87 |
+
نصوص AI عادة لها perplexity أقل (أكثر قابلية للتنبؤ)
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
if model is None or tokenizer is None:
|
| 91 |
+
# حساب تقريبي بناءً على تكرار الكلمات
|
| 92 |
+
words = text.lower().split()
|
| 93 |
+
word_freq = Counter(words)
|
| 94 |
+
total_words = len(words)
|
| 95 |
+
|
| 96 |
+
# حساب entropy
|
| 97 |
+
entropy = 0
|
| 98 |
+
for count in word_freq.values():
|
| 99 |
+
probability = count / total_words
|
| 100 |
+
if probability > 0:
|
| 101 |
+
entropy -= probability * math.log2(probability)
|
| 102 |
+
|
| 103 |
+
# تقريب perplexity
|
| 104 |
+
perplexity = 2 ** entropy
|
| 105 |
+
return min(perplexity, 1000) # Cap at 1000
|
| 106 |
+
else:
|
| 107 |
+
# حساب حقيقي باستخدام موديل
|
| 108 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
| 111 |
+
loss = outputs.loss
|
| 112 |
+
perplexity = torch.exp(loss).item()
|
| 113 |
+
return min(perplexity, 1000)
|
| 114 |
+
except Exception as e:
|
| 115 |
+
logger.warning(f"Error calculating perplexity: {e}")
|
| 116 |
+
return 50.0 # Default value
|
| 117 |
+
|
| 118 |
+
@staticmethod
|
| 119 |
+
def calculate_burstiness(text: str):
|
| 120 |
+
"""
|
| 121 |
+
حساب Burstiness - قياس التنوع في طول الجمل
|
| 122 |
+
البشر عندهم burstiness أعلى (جمل متنوعة الطول)
|
| 123 |
+
AI عادة أكثر اتساقاً
|
| 124 |
+
"""
|
| 125 |
+
try:
|
| 126 |
+
# تقسيم النص لجمل
|
| 127 |
+
sentences = re.split(r'[.!?]+', text)
|
| 128 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
| 129 |
+
|
| 130 |
+
if len(sentences) < 2:
|
| 131 |
+
return 0.0
|
| 132 |
+
|
| 133 |
+
# حسا�� طول كل جملة
|
| 134 |
+
sentence_lengths = [len(s.split()) for s in sentences]
|
| 135 |
+
|
| 136 |
+
# حساب الانحراف المعياري والمتوسط
|
| 137 |
+
mean_length = np.mean(sentence_lengths)
|
| 138 |
+
std_length = np.std(sentence_lengths)
|
| 139 |
+
|
| 140 |
+
# Burstiness = الانحراف المعياري / المتوسط
|
| 141 |
+
if mean_length > 0:
|
| 142 |
+
burstiness = std_length / mean_length
|
| 143 |
+
else:
|
| 144 |
+
burstiness = 0.0
|
| 145 |
+
|
| 146 |
+
return round(burstiness, 4)
|
| 147 |
+
except Exception as e:
|
| 148 |
+
logger.warning(f"Error calculating burstiness: {e}")
|
| 149 |
+
return 0.5
|
| 150 |
+
|
| 151 |
+
@staticmethod
|
| 152 |
+
def calculate_vocabulary_diversity(text: str):
|
| 153 |
+
"""
|
| 154 |
+
حساب تنوع المفردات
|
| 155 |
+
البشر يستخدمون كلمات أكثر تنوعاً
|
| 156 |
+
"""
|
| 157 |
+
words = text.lower().split()
|
| 158 |
+
unique_words = set(words)
|
| 159 |
+
if len(words) > 0:
|
| 160 |
+
diversity = len(unique_words) / len(words)
|
| 161 |
+
else:
|
| 162 |
+
diversity = 0
|
| 163 |
+
return round(diversity, 4)
|
| 164 |
+
|
| 165 |
+
@staticmethod
|
| 166 |
+
def detect_ai_patterns(text: str):
|
| 167 |
+
"""
|
| 168 |
+
كشف الأنماط الشائعة في نصوص AI
|
| 169 |
+
"""
|
| 170 |
+
ai_patterns = [
|
| 171 |
+
r"it['\s]+s important to note",
|
| 172 |
+
r"in conclusion",
|
| 173 |
+
r"furthermore",
|
| 174 |
+
r"comprehensive understanding",
|
| 175 |
+
r"it is worth noting",
|
| 176 |
+
r"however, it should be noted",
|
| 177 |
+
r"on the other hand",
|
| 178 |
+
r"in summary",
|
| 179 |
+
r"to begin with",
|
| 180 |
+
r"first and foremost"
|
| 181 |
+
]
|
| 182 |
+
|
| 183 |
+
pattern_count = 0
|
| 184 |
+
for pattern in ai_patterns:
|
| 185 |
+
if re.search(pattern, text.lower()):
|
| 186 |
+
pattern_count += 1
|
| 187 |
+
|
| 188 |
+
return pattern_count
|
| 189 |
+
|
| 190 |
+
@staticmethod
|
| 191 |
+
def detect_human_patterns(text: str):
|
| 192 |
+
"""
|
| 193 |
+
كشف الأنماط الشائعة في الكتابة البشرية
|
| 194 |
+
"""
|
| 195 |
+
human_patterns = [
|
| 196 |
+
r"kinda|sorta|gonna|wanna|gotta",
|
| 197 |
+
r"tbh|idk|lol|omg|btw",
|
| 198 |
+
r"!{2,}|\?{2,}|\.{3,}",
|
| 199 |
+
r"i think|i feel|i believe",
|
| 200 |
+
r"like,|you know,|i mean,",
|
| 201 |
+
r"anyway|anyhow|whatever"
|
| 202 |
+
]
|
| 203 |
+
|
| 204 |
+
pattern_count = 0
|
| 205 |
+
for pattern in human_patterns:
|
| 206 |
+
if re.search(pattern, text.lower()):
|
| 207 |
+
pattern_count += 1
|
| 208 |
+
|
| 209 |
+
return pattern_count
|
| 210 |
+
|
| 211 |
+
# =====================================================
|
| 212 |
+
# 🤖 Model Manager - إدارة الموديلات المحسنة
|
| 213 |
# =====================================================
|
| 214 |
+
class EnhancedModelManager:
|
| 215 |
def __init__(self):
|
| 216 |
+
self.modernbert_tokenizer = None
|
| 217 |
+
self.modernbert_models = []
|
| 218 |
+
self.additional_models = {}
|
| 219 |
+
self.additional_tokenizers = {}
|
| 220 |
self.models_loaded = False
|
| 221 |
+
self.metrics = TextMetrics()
|
| 222 |
+
|
| 223 |
+
# ModernBERT URLs
|
| 224 |
+
self.modernbert_urls = [
|
| 225 |
"https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12",
|
| 226 |
"https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
|
| 227 |
]
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
# Additional models to try
|
| 230 |
+
self.additional_model_configs = [
|
| 231 |
+
{
|
| 232 |
+
"name": "chatgpt-detector-roberta",
|
| 233 |
+
"model_id": "Hello-SimpleAI/chatgpt-detector-roberta",
|
| 234 |
+
"type": "classification"
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"name": "openai-detector",
|
| 238 |
+
"model_id": "roberta-base-openai-detector",
|
| 239 |
+
"type": "classification"
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"name": "ai-content-detector",
|
| 243 |
+
"model_id": "PirateXX/AI-Content-Detector",
|
| 244 |
+
"type": "classification"
|
| 245 |
+
}
|
| 246 |
+
]
|
| 247 |
+
|
| 248 |
+
def load_modernbert_tokenizer(self):
|
| 249 |
+
"""تحميل ModernBERT tokenizer"""
|
| 250 |
try:
|
| 251 |
+
logger.info("📝 Loading ModernBERT tokenizer...")
|
| 252 |
+
self.modernbert_tokenizer = AutoTokenizer.from_pretrained(
|
| 253 |
+
"answerdotai/ModernBERT-base",
|
| 254 |
cache_dir=CACHE_DIR,
|
| 255 |
use_fast=True,
|
| 256 |
trust_remote_code=False
|
| 257 |
)
|
|
|
|
| 258 |
|
| 259 |
+
# إعداد معالج النصوص
|
|
|
|
| 260 |
try:
|
| 261 |
+
newline_to_space = Replace(Regex(r'\s*\n\s*'), " ")
|
| 262 |
+
join_hyphen_break = Replace(Regex(r'(\w+)[--]\s*\n\s*(\w+)'), r"\1\2")
|
| 263 |
+
self.modernbert_tokenizer.backend_tokenizer.normalizer = Sequence([
|
| 264 |
+
self.modernbert_tokenizer.backend_tokenizer.normalizer,
|
| 265 |
+
join_hyphen_break,
|
| 266 |
+
newline_to_space,
|
| 267 |
+
Strip()
|
| 268 |
+
])
|
| 269 |
+
except Exception as e:
|
| 270 |
+
logger.warning(f"⚠️ Could not set custom normalizer: {e}")
|
| 271 |
+
|
| 272 |
+
logger.info("✅ ModernBERT tokenizer loaded")
|
| 273 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
except Exception as e:
|
| 275 |
+
logger.error(f"❌ Failed to load tokenizer: {e}")
|
| 276 |
+
return False
|
|
|
|
| 277 |
|
| 278 |
+
def load_modernbert_model(self, model_url=None, model_path=None, model_name="ModernBERT"):
|
| 279 |
+
"""تحميل موديل ModernBERT واحد"""
|
|
|
|
| 280 |
try:
|
| 281 |
+
logger.info(f"🤖 Loading {model_name}...")
|
| 282 |
|
|
|
|
| 283 |
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 284 |
+
"answerdotai/ModernBERT-base",
|
| 285 |
num_labels=41,
|
| 286 |
cache_dir=CACHE_DIR,
|
| 287 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 288 |
low_cpu_mem_usage=True,
|
| 289 |
trust_remote_code=False
|
| 290 |
)
|
|
|
|
| 291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
if model_path and os.path.exists(model_path):
|
| 293 |
logger.info(f"📁 Loading from local file: {model_path}")
|
| 294 |
state_dict = torch.load(model_path, map_location=device, weights_only=True)
|
| 295 |
base_model.load_state_dict(state_dict, strict=False)
|
| 296 |
elif model_url:
|
| 297 |
+
logger.info(f"🌐 Downloading weights from URL...")
|
| 298 |
+
try:
|
| 299 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
| 300 |
+
model_url,
|
| 301 |
+
map_location=device,
|
| 302 |
+
progress=True,
|
| 303 |
+
check_hash=False,
|
| 304 |
+
file_name=f"{model_name}.pt"
|
| 305 |
+
)
|
| 306 |
+
base_model.load_state_dict(state_dict, strict=False)
|
| 307 |
+
except Exception as e:
|
| 308 |
+
logger.warning(f"⚠️ Could not load weights: {e}")
|
| 309 |
+
logger.info("📊 Using model with random initialization")
|
| 310 |
+
|
| 311 |
+
model = base_model.to(device)
|
| 312 |
+
model.eval()
|
| 313 |
+
|
| 314 |
+
if 'state_dict' in locals():
|
| 315 |
+
del state_dict
|
| 316 |
+
gc.collect()
|
| 317 |
+
if torch.cuda.is_available():
|
| 318 |
+
torch.cuda.empty_cache()
|
| 319 |
+
|
| 320 |
+
logger.info(f"✅ {model_name} loaded")
|
| 321 |
+
return model
|
| 322 |
+
|
| 323 |
+
except Exception as e:
|
| 324 |
+
logger.error(f"❌ Failed to load {model_name}: {e}")
|
| 325 |
+
return None
|
| 326 |
+
|
| 327 |
+
def load_additional_model(self, model_config):
|
| 328 |
+
"""تحميل موديلات إضافية للكشف عن AI"""
|
| 329 |
+
try:
|
| 330 |
+
model_name = model_config["name"]
|
| 331 |
+
model_id = model_config["model_id"]
|
| 332 |
+
|
| 333 |
+
logger.info(f"🔧 Loading {model_name}...")
|
| 334 |
+
|
| 335 |
+
# Try loading as a pipeline first (easier)
|
| 336 |
+
try:
|
| 337 |
+
classifier = pipeline(
|
| 338 |
+
"text-classification",
|
| 339 |
+
model=model_id,
|
| 340 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 341 |
+
model_kwargs={"cache_dir": CACHE_DIR}
|
| 342 |
)
|
| 343 |
+
self.additional_models[model_name] = classifier
|
| 344 |
+
logger.info(f"✅ {model_name} loaded as pipeline")
|
| 345 |
+
return True
|
| 346 |
+
except:
|
| 347 |
+
# Try loading manually
|
| 348 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 349 |
+
model_id,
|
| 350 |
+
cache_dir=CACHE_DIR
|
| 351 |
+
)
|
| 352 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 353 |
+
model_id,
|
| 354 |
+
cache_dir=CACHE_DIR,
|
| 355 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 356 |
+
).to(device)
|
| 357 |
+
model.eval()
|
| 358 |
|
| 359 |
+
self.additional_tokenizers[model_name] = tokenizer
|
| 360 |
+
self.additional_models[model_name] = model
|
| 361 |
+
logger.info(f"✅ {model_name} loaded manually")
|
| 362 |
+
return True
|
| 363 |
+
|
| 364 |
+
except Exception as e:
|
| 365 |
+
logger.warning(f"⚠️ Could not load {model_config['name']}: {e}")
|
| 366 |
+
return False
|
| 367 |
+
|
| 368 |
+
def load_all_models(self, max_modernbert=2, load_additional=True):
|
| 369 |
+
"""تحميل جميع الموديلات"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
if self.models_loaded:
|
| 371 |
logger.info("✨ Models already loaded")
|
| 372 |
return True
|
| 373 |
|
| 374 |
+
# Load ModernBERT tokenizer
|
| 375 |
+
if not self.load_modernbert_tokenizer():
|
|
|
|
| 376 |
return False
|
| 377 |
|
| 378 |
+
# Load ModernBERT models
|
| 379 |
+
logger.info(f"🚀 Loading up to {max_modernbert} ModernBERT models...")
|
| 380 |
|
| 381 |
+
# Try local file first
|
| 382 |
+
local_path = "modernbert.bin"
|
| 383 |
+
if os.path.exists(local_path):
|
| 384 |
+
model = self.load_modernbert_model(
|
| 385 |
+
model_path=local_path,
|
| 386 |
+
model_name="ModernBERT-Local"
|
| 387 |
)
|
| 388 |
if model is not None:
|
| 389 |
+
self.modernbert_models.append(model)
|
| 390 |
|
| 391 |
+
# Load from URLs
|
| 392 |
+
for i, url in enumerate(self.modernbert_urls[:max_modernbert - len(self.modernbert_models)]):
|
| 393 |
+
if len(self.modernbert_models) >= max_modernbert:
|
| 394 |
break
|
| 395 |
+
|
| 396 |
+
model = self.load_modernbert_model(
|
| 397 |
+
model_url=url,
|
| 398 |
+
model_name=f"ModernBERT-{i+1}"
|
|
|
|
| 399 |
)
|
| 400 |
if model is not None:
|
| 401 |
+
self.modernbert_models.append(model)
|
| 402 |
+
|
| 403 |
+
# Load additional models
|
| 404 |
+
if load_additional:
|
| 405 |
+
logger.info("🎯 Loading additional AI detection models...")
|
| 406 |
+
for config in self.additional_model_configs:
|
| 407 |
+
self.load_additional_model(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
| 409 |
+
# Check success
|
| 410 |
+
total_models = len(self.modernbert_models) + len(self.additional_models)
|
| 411 |
+
if total_models > 0:
|
| 412 |
self.models_loaded = True
|
| 413 |
+
logger.info(f"✅ Loaded {len(self.modernbert_models)} ModernBERT + {len(self.additional_models)} additional models")
|
| 414 |
return True
|
| 415 |
else:
|
| 416 |
logger.error("❌ No models could be loaded")
|
| 417 |
return False
|
| 418 |
|
| 419 |
+
def classify_with_modernbert(self, text: str, model_index: int):
|
| 420 |
+
"""تصنيف النص باستخدام موديل ModernBERT واحد"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
try:
|
| 422 |
+
if model_index >= len(self.modernbert_models):
|
| 423 |
+
return None
|
| 424 |
+
|
| 425 |
+
model = self.modernbert_models[model_index]
|
| 426 |
+
cleaned_text = clean_text(text)
|
| 427 |
+
|
| 428 |
+
inputs = self.modernbert_tokenizer(
|
| 429 |
cleaned_text,
|
| 430 |
return_tensors="pt",
|
| 431 |
truncation=True,
|
| 432 |
+
max_length=512,
|
| 433 |
padding=True
|
| 434 |
).to(device)
|
| 435 |
+
|
| 436 |
+
with torch.no_grad():
|
| 437 |
+
logits = model(**inputs).logits
|
| 438 |
+
probs = torch.softmax(logits[0], dim=0)
|
| 439 |
+
|
| 440 |
+
human_prob = probs[24].item()
|
| 441 |
+
ai_probs = probs.clone()
|
| 442 |
+
ai_probs[24] = 0
|
| 443 |
+
ai_total = ai_probs.sum().item()
|
| 444 |
+
|
| 445 |
+
total = human_prob + ai_total
|
| 446 |
+
if total > 0:
|
| 447 |
+
human_pct = (human_prob / total) * 100
|
| 448 |
+
ai_pct = (ai_total / total) * 100
|
| 449 |
+
else:
|
| 450 |
+
human_pct = ai_pct = 50
|
| 451 |
+
|
| 452 |
+
ai_model_idx = torch.argmax(ai_probs).item()
|
| 453 |
+
|
| 454 |
+
return {
|
| 455 |
+
"model_name": f"ModernBERT-{model_index+1}",
|
| 456 |
+
"human_score": round(human_pct, 2),
|
| 457 |
+
"ai_score": round(ai_pct, 2),
|
| 458 |
+
"predicted_model": label_mapping.get(ai_model_idx, "Unknown"),
|
| 459 |
+
"confidence": round(max(human_pct, ai_pct), 2)
|
| 460 |
+
}
|
| 461 |
except Exception as e:
|
| 462 |
+
logger.error(f"Error in ModernBERT {model_index}: {e}")
|
| 463 |
+
return None
|
| 464 |
+
|
| 465 |
+
def classify_with_additional(self, text: str, model_name: str):
|
| 466 |
+
"""تصنيف النص باستخدام موديل إضافي"""
|
| 467 |
+
try:
|
| 468 |
+
if model_name not in self.additional_models:
|
| 469 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
+
model = self.additional_models[model_name]
|
|
|
|
| 472 |
|
| 473 |
+
# Check if it's a pipeline or model
|
| 474 |
+
if hasattr(model, '__call__'):
|
| 475 |
+
# It's a pipeline
|
| 476 |
+
result = model(text, truncation=True, max_length=512)
|
| 477 |
+
|
| 478 |
+
# Parse results based on model output format
|
| 479 |
+
ai_score = 0
|
| 480 |
+
human_score = 0
|
| 481 |
+
|
| 482 |
+
for item in result:
|
| 483 |
+
label = item['label'].lower()
|
| 484 |
+
score = item['score'] * 100
|
| 485 |
+
|
| 486 |
+
if 'fake' in label or 'ai' in label or 'gpt' in label:
|
| 487 |
+
ai_score = max(ai_score, score)
|
| 488 |
+
elif 'real' in label or 'human' in label:
|
| 489 |
+
human_score = max(human_score, score)
|
| 490 |
+
|
| 491 |
+
# Normalize if needed
|
| 492 |
+
if ai_score == 0 and human_score == 0:
|
| 493 |
+
ai_score = human_score = 50
|
| 494 |
+
|
| 495 |
+
return {
|
| 496 |
+
"model_name": model_name,
|
| 497 |
+
"human_score": round(human_score, 2),
|
| 498 |
+
"ai_score": round(ai_score, 2),
|
| 499 |
+
"predicted_model": "AI" if ai_score > human_score else "Human",
|
| 500 |
+
"confidence": round(max(ai_score, human_score), 2)
|
| 501 |
+
}
|
| 502 |
+
else:
|
| 503 |
+
# It's a model, use tokenizer
|
| 504 |
+
tokenizer = self.additional_tokenizers.get(model_name)
|
| 505 |
+
if tokenizer is None:
|
| 506 |
+
return None
|
| 507 |
+
|
| 508 |
+
inputs = tokenizer(
|
| 509 |
+
text,
|
| 510 |
+
return_tensors="pt",
|
| 511 |
+
truncation=True,
|
| 512 |
+
max_length=512,
|
| 513 |
+
padding=True
|
| 514 |
+
).to(device)
|
| 515 |
+
|
| 516 |
+
with torch.no_grad():
|
| 517 |
+
outputs = model(**inputs)
|
| 518 |
+
probs = torch.softmax(outputs.logits[0], dim=0)
|
| 519 |
+
|
| 520 |
+
# Assuming binary classification (AI vs Human)
|
| 521 |
+
if len(probs) == 2:
|
| 522 |
+
human_score = probs[0].item() * 100
|
| 523 |
+
ai_score = probs[1].item() * 100
|
| 524 |
+
else:
|
| 525 |
+
# Handle multi-class
|
| 526 |
+
ai_score = human_score = 50
|
| 527 |
+
|
| 528 |
+
return {
|
| 529 |
+
"model_name": model_name,
|
| 530 |
+
"human_score": round(human_score, 2),
|
| 531 |
+
"ai_score": round(ai_score, 2),
|
| 532 |
+
"predicted_model": "AI" if ai_score > human_score else "Human",
|
| 533 |
+
"confidence": round(max(ai_score, human_score), 2)
|
| 534 |
+
}
|
| 535 |
+
|
| 536 |
+
except Exception as e:
|
| 537 |
+
logger.warning(f"Error in {model_name}: {e}")
|
| 538 |
+
return None
|
| 539 |
+
|
| 540 |
+
def comprehensive_analysis(self, text: str):
|
| 541 |
+
"""تحليل شامل باستخدام جميع الموديلات والمقاييس"""
|
| 542 |
+
if not self.models_loaded:
|
| 543 |
+
raise ValueError("No models loaded")
|
| 544 |
|
| 545 |
+
results = {
|
| 546 |
+
"individual_models": [],
|
| 547 |
+
"ensemble_result": {},
|
| 548 |
+
"metrics": {},
|
| 549 |
+
"pattern_analysis": {}
|
| 550 |
+
}
|
| 551 |
|
| 552 |
+
# 1. Calculate text metrics
|
| 553 |
+
logger.info("📊 Calculating text metrics...")
|
| 554 |
+
results["metrics"] = {
|
| 555 |
+
"perplexity": self.metrics.calculate_perplexity(text),
|
| 556 |
+
"burstiness": self.metrics.calculate_burstiness(text),
|
| 557 |
+
"vocabulary_diversity": self.metrics.calculate_vocabulary_diversity(text),
|
| 558 |
+
"text_length": len(text.split()),
|
| 559 |
+
"sentence_count": len(re.split(r'[.!?]+', text))
|
| 560 |
+
}
|
| 561 |
|
| 562 |
+
# 2. Pattern detection
|
| 563 |
+
results["pattern_analysis"] = {
|
| 564 |
+
"ai_patterns_found": self.metrics.detect_ai_patterns(text),
|
| 565 |
+
"human_patterns_found": self.metrics.detect_human_patterns(text)
|
| 566 |
+
}
|
| 567 |
|
| 568 |
+
# 3. Run ModernBERT models
|
| 569 |
+
modernbert_results = []
|
| 570 |
+
for i in range(len(self.modernbert_models)):
|
| 571 |
+
result = self.classify_with_modernbert(text, i)
|
| 572 |
+
if result:
|
| 573 |
+
results["individual_models"].append(result)
|
| 574 |
+
modernbert_results.append(result)
|
| 575 |
+
|
| 576 |
+
# 4. Run additional models
|
| 577 |
+
for model_name in self.additional_models.keys():
|
| 578 |
+
result = self.classify_with_additional(text, model_name)
|
| 579 |
+
if result:
|
| 580 |
+
results["individual_models"].append(result)
|
| 581 |
+
|
| 582 |
+
# 5. Calculate ensemble result (weighted average)
|
| 583 |
+
if results["individual_models"]:
|
| 584 |
+
total_ai = 0
|
| 585 |
+
total_human = 0
|
| 586 |
+
weights_sum = 0
|
| 587 |
+
|
| 588 |
+
for i, result in enumerate(results["individual_models"]):
|
| 589 |
+
# Give ModernBERT models higher weight
|
| 590 |
+
weight = 1.5 if i < len(modernbert_results) else 1.0
|
| 591 |
+
total_ai += result["ai_score"] * weight
|
| 592 |
+
total_human += result["human_score"] * weight
|
| 593 |
+
weights_sum += weight
|
| 594 |
+
|
| 595 |
+
if weights_sum > 0:
|
| 596 |
+
ensemble_ai = total_ai / weights_sum
|
| 597 |
+
ensemble_human = total_human / weights_sum
|
| 598 |
+
else:
|
| 599 |
+
ensemble_ai = ensemble_human = 50
|
| 600 |
+
|
| 601 |
+
# Adjust based on metrics
|
| 602 |
+
# High perplexity suggests human text
|
| 603 |
+
if results["metrics"]["perplexity"] > 100:
|
| 604 |
+
ensemble_human += 5
|
| 605 |
+
ensemble_ai -= 5
|
| 606 |
+
elif results["metrics"]["perplexity"] < 30:
|
| 607 |
+
ensemble_ai += 5
|
| 608 |
+
ensemble_human -= 5
|
| 609 |
+
|
| 610 |
+
# High burstiness suggests human text
|
| 611 |
+
if results["metrics"]["burstiness"] > 0.8:
|
| 612 |
+
ensemble_human += 5
|
| 613 |
+
ensemble_ai -= 5
|
| 614 |
+
elif results["metrics"]["burstiness"] < 0.3:
|
| 615 |
+
ensemble_ai += 5
|
| 616 |
+
ensemble_human -= 5
|
| 617 |
+
|
| 618 |
+
# Pattern analysis adjustment
|
| 619 |
+
pattern_adjustment = (results["pattern_analysis"]["ai_patterns_found"] -
|
| 620 |
+
results["pattern_analysis"]["human_patterns_found"]) * 3
|
| 621 |
+
ensemble_ai += pattern_adjustment
|
| 622 |
+
ensemble_human -= pattern_adjustment
|
| 623 |
+
|
| 624 |
+
# Normalize to 100%
|
| 625 |
+
total = ensemble_ai + ensemble_human
|
| 626 |
+
if total > 0:
|
| 627 |
+
ensemble_ai = (ensemble_ai / total) * 100
|
| 628 |
+
ensemble_human = (ensemble_human / total) * 100
|
| 629 |
+
|
| 630 |
+
# Determine most likely AI model
|
| 631 |
+
if ensemble_ai > ensemble_human and modernbert_results:
|
| 632 |
+
predicted_model = modernbert_results[0]["predicted_model"]
|
| 633 |
+
else:
|
| 634 |
+
predicted_model = "Human"
|
| 635 |
+
|
| 636 |
+
results["ensemble_result"] = {
|
| 637 |
+
"ai_percentage": round(min(max(ensemble_ai, 0), 100), 2),
|
| 638 |
+
"human_percentage": round(min(max(ensemble_human, 0), 100), 2),
|
| 639 |
+
"predicted_model": predicted_model,
|
| 640 |
+
"confidence": round(max(ensemble_ai, ensemble_human), 2),
|
| 641 |
+
"is_human": ensemble_human > ensemble_ai,
|
| 642 |
+
"models_used": len(results["individual_models"])
|
| 643 |
+
}
|
| 644 |
|
| 645 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
|
| 647 |
# =====================================================
|
| 648 |
# 🧹 دوال التنظيف والمعالجة
|
|
|
|
| 662 |
# 🌐 FastAPI Application
|
| 663 |
# =====================================================
|
| 664 |
app = FastAPI(
|
| 665 |
+
title="Enhanced ModernBERT AI Detector",
|
| 666 |
+
description="Advanced AI detection with multiple models, perplexity, and burstiness analysis",
|
| 667 |
+
version="3.0.0"
|
| 668 |
)
|
| 669 |
|
| 670 |
+
# إضافة CORS
|
| 671 |
app.add_middleware(
|
| 672 |
CORSMiddleware,
|
| 673 |
allow_origins=["*"],
|
|
|
|
| 676 |
allow_headers=["*"],
|
| 677 |
)
|
| 678 |
|
| 679 |
+
# إنشاء مدير الموديلات المحسن
|
| 680 |
+
model_manager = EnhancedModelManager()
|
| 681 |
|
| 682 |
# =====================================================
|
| 683 |
# 📝 نماذج البيانات (Pydantic Models)
|
|
|
|
| 685 |
class TextInput(BaseModel):
|
| 686 |
text: str
|
| 687 |
analyze_paragraphs: Optional[bool] = False
|
| 688 |
+
return_individual_scores: Optional[bool] = True
|
| 689 |
|
| 690 |
class SimpleTextInput(BaseModel):
|
| 691 |
text: str
|
| 692 |
|
| 693 |
+
class EnhancedDetectionResult(BaseModel):
|
| 694 |
success: bool
|
| 695 |
code: int
|
| 696 |
message: str
|
|
|
|
| 703 |
async def startup_event():
|
| 704 |
"""تحميل الموديلات عند بداية التشغيل"""
|
| 705 |
logger.info("=" * 50)
|
| 706 |
+
logger.info("🚀 Starting Enhanced ModernBERT AI Detector...")
|
| 707 |
logger.info(f"🐍 Python version: {sys.version}")
|
| 708 |
logger.info(f"🔥 PyTorch version: {torch.__version__}")
|
|
|
|
|
|
|
|
|
|
| 709 |
logger.info("=" * 50)
|
| 710 |
|
| 711 |
+
# Load models
|
| 712 |
+
max_modernbert = int(os.environ.get("MAX_MODERNBERT_MODELS", "2"))
|
| 713 |
+
load_additional = os.environ.get("LOAD_ADDITIONAL_MODELS", "true").lower() == "true"
|
| 714 |
+
|
| 715 |
+
success = model_manager.load_all_models(
|
| 716 |
+
max_modernbert=max_modernbert,
|
| 717 |
+
load_additional=load_additional
|
| 718 |
+
)
|
| 719 |
|
| 720 |
if success:
|
| 721 |
+
logger.info("✅ Application ready with enhanced features!")
|
| 722 |
else:
|
| 723 |
logger.error("⚠️ Failed to load models - API will return errors")
|
|
|
|
| 724 |
|
| 725 |
@app.get("/")
|
| 726 |
async def root():
|
| 727 |
"""الصفحة الرئيسية"""
|
| 728 |
+
models_info = {
|
| 729 |
+
"modernbert_models": len(model_manager.modernbert_models),
|
| 730 |
+
"additional_models": list(model_manager.additional_models.keys())
|
| 731 |
+
}
|
| 732 |
+
|
| 733 |
return {
|
| 734 |
+
"message": "Enhanced ModernBERT AI Text Detector API",
|
| 735 |
"status": "online" if model_manager.models_loaded else "initializing",
|
| 736 |
+
"models": models_info,
|
|
|
|
| 737 |
"device": str(device),
|
| 738 |
+
"features": [
|
| 739 |
+
"Multiple AI detection models",
|
| 740 |
+
"Perplexity analysis",
|
| 741 |
+
"Burstiness analysis",
|
| 742 |
+
"Pattern detection",
|
| 743 |
+
"Individual model scores",
|
| 744 |
+
"Ensemble predictions"
|
| 745 |
+
],
|
| 746 |
"endpoints": {
|
| 747 |
"analyze": "/analyze",
|
| 748 |
"simple": "/analyze-simple",
|
|
|
|
| 763 |
|
| 764 |
return {
|
| 765 |
"status": "healthy" if model_manager.models_loaded else "unhealthy",
|
| 766 |
+
"modernbert_models": len(model_manager.modernbert_models),
|
| 767 |
+
"additional_models": len(model_manager.additional_models),
|
| 768 |
+
"total_models": len(model_manager.modernbert_models) + len(model_manager.additional_models),
|
| 769 |
"device": str(device),
|
| 770 |
"cuda_available": torch.cuda.is_available(),
|
| 771 |
"memory_info": memory_info
|
| 772 |
}
|
| 773 |
|
| 774 |
+
@app.post("/analyze", response_model=EnhancedDetectionResult)
|
| 775 |
+
async def analyze_text_enhanced(data: TextInput):
|
| 776 |
"""
|
| 777 |
+
Enhanced analysis with multiple models and metrics
|
|
|
|
| 778 |
"""
|
| 779 |
try:
|
| 780 |
+
# Validate input
|
| 781 |
text = data.text.strip()
|
| 782 |
if not text:
|
| 783 |
+
return EnhancedDetectionResult(
|
| 784 |
success=False,
|
| 785 |
code=400,
|
| 786 |
message="Empty input text",
|
| 787 |
data={}
|
| 788 |
)
|
| 789 |
|
| 790 |
+
# Ensure models are loaded
|
| 791 |
if not model_manager.models_loaded:
|
| 792 |
+
if not model_manager.load_all_models():
|
| 793 |
+
return EnhancedDetectionResult(
|
|
|
|
| 794 |
success=False,
|
| 795 |
code=503,
|
| 796 |
+
message="Models not available",
|
| 797 |
data={}
|
| 798 |
)
|
| 799 |
|
| 800 |
+
# Comprehensive analysis
|
| 801 |
+
analysis_result = model_manager.comprehensive_analysis(text)
|
|
|
|
|
|
|
|
|
|
| 802 |
|
| 803 |
+
# Basic stats
|
| 804 |
+
total_words = len(text.split())
|
| 805 |
+
ai_percentage = analysis_result["ensemble_result"]["ai_percentage"]
|
| 806 |
+
human_percentage = analysis_result["ensemble_result"]["human_percentage"]
|
| 807 |
ai_words = int(total_words * (ai_percentage / 100))
|
| 808 |
|
| 809 |
+
# Paragraph analysis if requested
|
| 810 |
paragraphs_analysis = []
|
| 811 |
+
if data.analyze_paragraphs:
|
| 812 |
paragraphs = split_into_paragraphs(text)
|
| 813 |
+
for para in paragraphs[:10]:
|
|
|
|
|
|
|
|
|
|
| 814 |
if para.strip():
|
| 815 |
try:
|
| 816 |
+
para_result = model_manager.comprehensive_analysis(para)
|
| 817 |
para_words = len(para.split())
|
|
|
|
|
|
|
| 818 |
|
| 819 |
paragraphs_analysis.append({
|
| 820 |
"paragraph": para[:200] + "..." if len(para) > 200 else para,
|
| 821 |
+
"ai_generated_score": para_result["ensemble_result"]["ai_percentage"] / 100,
|
| 822 |
+
"human_written_score": para_result["ensemble_result"]["human_percentage"] / 100,
|
| 823 |
+
"predicted_model": para_result["ensemble_result"]["predicted_model"],
|
| 824 |
+
"metrics": {
|
| 825 |
+
"perplexity": para_result["metrics"]["perplexity"],
|
| 826 |
+
"burstiness": para_result["metrics"]["burstiness"]
|
| 827 |
+
}
|
| 828 |
})
|
| 829 |
except Exception as e:
|
| 830 |
logger.warning(f"Failed to analyze paragraph: {e}")
|
| 831 |
+
|
| 832 |
+
# Prepare response
|
| 833 |
+
response_data = {
|
| 834 |
+
"fakePercentage": ai_percentage,
|
| 835 |
+
"isHuman": human_percentage,
|
| 836 |
+
"textWords": total_words,
|
| 837 |
+
"aiWords": ai_words,
|
| 838 |
+
"predicted_model": analysis_result["ensemble_result"]["predicted_model"],
|
| 839 |
+
"feedback": "Most of Your Text is AI/GPT Generated" if ai_percentage > 50 else "Most of Your Text Appears Human-Written",
|
| 840 |
+
"confidence": analysis_result["ensemble_result"]["confidence"],
|
| 841 |
+
"models_used": analysis_result["ensemble_result"]["models_used"],
|
| 842 |
+
|
| 843 |
+
# New: Metrics
|
| 844 |
+
"metrics": analysis_result["metrics"],
|
| 845 |
+
|
| 846 |
+
# New: Pattern analysis
|
| 847 |
+
"pattern_analysis": analysis_result["pattern_analysis"],
|
| 848 |
|
| 849 |
+
# Paragraphs if requested
|
| 850 |
+
"paragraphs": paragraphs_analysis,
|
| 851 |
+
|
| 852 |
+
# Text preview
|
| 853 |
+
"input_text": text[:500] + "..." if len(text) > 500 else text,
|
| 854 |
+
"detected_language": "en"
|
| 855 |
+
}
|
| 856 |
|
| 857 |
+
# Add individual model scores if requested
|
| 858 |
+
if data.return_individual_scores:
|
| 859 |
+
response_data["individual_models"] = analysis_result["individual_models"]
|
|
|
|
|
|
|
| 860 |
|
| 861 |
+
return EnhancedDetectionResult(
|
|
|
|
| 862 |
success=True,
|
| 863 |
code=200,
|
| 864 |
+
message="Enhanced analysis completed",
|
| 865 |
+
data=response_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 866 |
)
|
| 867 |
|
| 868 |
except Exception as e:
|
| 869 |
logger.error(f"Analysis error: {e}", exc_info=True)
|
| 870 |
+
return EnhancedDetectionResult(
|
| 871 |
success=False,
|
| 872 |
code=500,
|
| 873 |
message=f"Analysis failed: {str(e)}",
|
|
|
|
| 877 |
@app.post("/analyze-simple")
|
| 878 |
async def analyze_simple(data: SimpleTextInput):
|
| 879 |
"""
|
| 880 |
+
Simple analysis - returns basic results only
|
| 881 |
"""
|
| 882 |
try:
|
| 883 |
text = data.text.strip()
|
|
|
|
| 885 |
raise HTTPException(status_code=400, detail="Empty text")
|
| 886 |
|
| 887 |
if not model_manager.models_loaded:
|
| 888 |
+
if not model_manager.load_all_models():
|
| 889 |
raise HTTPException(status_code=503, detail="Models not available")
|
| 890 |
|
| 891 |
+
result = model_manager.comprehensive_analysis(text)
|
| 892 |
+
ensemble = result["ensemble_result"]
|
| 893 |
|
| 894 |
return {
|
| 895 |
+
"is_ai": ensemble["ai_percentage"] > 50,
|
| 896 |
+
"ai_score": ensemble["ai_percentage"],
|
| 897 |
+
"human_score": ensemble["human_percentage"],
|
| 898 |
+
"detected_model": ensemble["predicted_model"],
|
| 899 |
+
"confidence": ensemble["confidence"],
|
| 900 |
+
"perplexity": result["metrics"]["perplexity"],
|
| 901 |
+
"burstiness": result["metrics"]["burstiness"]
|
| 902 |
}
|
| 903 |
|
| 904 |
except HTTPException:
|
|
|
|
| 913 |
if __name__ == "__main__":
|
| 914 |
import uvicorn
|
| 915 |
|
|
|
|
| 916 |
port = int(os.environ.get("PORT", 8000))
|
| 917 |
host = os.environ.get("HOST", "0.0.0.0")
|
| 918 |
workers = int(os.environ.get("WORKERS", 1))
|
| 919 |
|
| 920 |
logger.info("=" * 50)
|
| 921 |
+
logger.info(f"🌐 Starting enhanced server on {host}:{port}")
|
| 922 |
logger.info(f"👷 Workers: {workers}")
|
| 923 |
logger.info(f"📚 Documentation: http://{host}:{port}/docs")
|
| 924 |
logger.info("=" * 50)
|
| 925 |
|
| 926 |
uvicorn.run(
|
| 927 |
+
"app_enhanced:app",
|
| 928 |
host=host,
|
| 929 |
port=port,
|
| 930 |
+
reload=False,
|
| 931 |
workers=workers,
|
| 932 |
+
log_level="info"
|
| 933 |
)
|