File size: 1,327 Bytes
41b7e31
 
 
 
 
 
 
08f0fa8
41b7e31
 
 
 
83175b1
 
41b7e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141595
41b7e31
 
 
 
3141595
41b7e31
3141595
41b7e31
 
 
 
83175b1
41b7e31
83175b1
41b7e31
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from flask import Flask, request, jsonify
from PIL import Image
import requests
from io import BytesIO
from sklearn.cluster import KMeans
import numpy as np


app = Flask(__name__)

def extract_dominant_color(image_url):
    try:
        response = requests.get(image_url)

        img = Image.open(BytesIO(response.content)).convert('RGB')
        img = img.resize((100, 100))  # 降低像素加快处理
        pixels = np.array(img).reshape(-1, 3)

        kmeans = KMeans(n_clusters=1, random_state=0).fit(pixels)
        dominant_color = kmeans.cluster_centers_[0].astype(int)
        hex_color = '#{:02x}{:02x}{:02x}'.format(*dominant_color)

        return hex_color
    except Exception as e:
        return str(e)

@app.route('/')
def index():
    return jsonify({
        "message": "Use /color?img=https://your-image.jpg to get dominant color."
    })

@app.route('/color')
def get_color():
    image_url = request.args.get('img')
    if not image_url:
        return jsonify({'error': 'Missing image URL ?img=xxx'}), 400

    hex_color = extract_dominant_color(image_url)

    if hex_color.startswith('#'):
        return jsonify({'RGB': hex_color})
    else:
        return jsonify({'error': 'Failed to extract color', 'detail': hex_color}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)