Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
·
079c7eb
1
Parent(s):
4b845f9
改进了在线搜索显示效果
Browse files- chat_func.py +41 -12
chat_func.py
CHANGED
|
@@ -6,6 +6,7 @@ import logging
|
|
| 6 |
import json
|
| 7 |
import os
|
| 8 |
import requests
|
|
|
|
| 9 |
|
| 10 |
from tqdm import tqdm
|
| 11 |
import colorama
|
|
@@ -99,6 +100,7 @@ def stream_predict(
|
|
| 99 |
top_p,
|
| 100 |
temperature,
|
| 101 |
selected_model,
|
|
|
|
| 102 |
):
|
| 103 |
def get_return_value():
|
| 104 |
return chatbot, history, status_text, all_token_counts
|
|
@@ -109,7 +111,10 @@ def stream_predict(
|
|
| 109 |
status_text = "开始实时传输回答……"
|
| 110 |
history.append(construct_user(inputs))
|
| 111 |
history.append(construct_assistant(""))
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
| 113 |
user_token_count = 0
|
| 114 |
if len(all_token_counts) == 0:
|
| 115 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
|
@@ -184,7 +189,7 @@ def stream_predict(
|
|
| 184 |
yield get_return_value()
|
| 185 |
break
|
| 186 |
history[-1] = construct_assistant(partial_words)
|
| 187 |
-
chatbot[-1] = (
|
| 188 |
all_token_counts[-1] += 1
|
| 189 |
yield get_return_value()
|
| 190 |
|
|
@@ -199,11 +204,15 @@ def predict_all(
|
|
| 199 |
top_p,
|
| 200 |
temperature,
|
| 201 |
selected_model,
|
|
|
|
| 202 |
):
|
| 203 |
logging.info("一次性回答模式")
|
| 204 |
history.append(construct_user(inputs))
|
| 205 |
history.append(construct_assistant(""))
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
| 207 |
all_token_counts.append(count_token(construct_user(inputs)))
|
| 208 |
try:
|
| 209 |
response = get_response(
|
|
@@ -229,7 +238,7 @@ def predict_all(
|
|
| 229 |
response = json.loads(response.text)
|
| 230 |
content = response["choices"][0]["message"]["content"]
|
| 231 |
history[-1] = construct_assistant(content)
|
| 232 |
-
chatbot[-1] = (
|
| 233 |
total_token_count = response["usage"]["total_tokens"]
|
| 234 |
all_token_counts[-1] = total_token_count - sum(all_token_counts)
|
| 235 |
status_text = construct_token_message(total_token_count)
|
|
@@ -247,7 +256,7 @@ def predict(
|
|
| 247 |
temperature,
|
| 248 |
stream=False,
|
| 249 |
selected_model=MODELS[0],
|
| 250 |
-
|
| 251 |
files = None,
|
| 252 |
should_check_token_count=True,
|
| 253 |
): # repetition_penalty, top_k
|
|
@@ -262,18 +271,24 @@ def predict(
|
|
| 262 |
history, chatbot, status_text = chat_ai(openai_api_key, index, inputs, history, chatbot)
|
| 263 |
yield chatbot, history, status_text, all_token_counts
|
| 264 |
return
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
web_results = []
|
| 268 |
-
for idx, result in enumerate(
|
| 269 |
logging.info(f"搜索结果{idx + 1}:{result}")
|
|
|
|
| 270 |
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
|
| 271 |
-
|
| 272 |
inputs = (
|
| 273 |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
| 274 |
.replace("{query}", inputs)
|
| 275 |
-
.replace("{web_results}", web_results)
|
| 276 |
)
|
|
|
|
| 277 |
if len(openai_api_key) != 51:
|
| 278 |
status_text = standard_error_msg + no_apikey_msg
|
| 279 |
logging.info(status_text)
|
|
@@ -286,8 +301,9 @@ def predict(
|
|
| 286 |
history[-2] = construct_user(inputs)
|
| 287 |
yield chatbot, history, status_text, all_token_counts
|
| 288 |
return
|
| 289 |
-
|
| 290 |
-
|
|
|
|
| 291 |
if stream:
|
| 292 |
logging.info("使用流式传输")
|
| 293 |
iter = stream_predict(
|
|
@@ -300,6 +316,7 @@ def predict(
|
|
| 300 |
top_p,
|
| 301 |
temperature,
|
| 302 |
selected_model,
|
|
|
|
| 303 |
)
|
| 304 |
for chatbot, history, status_text, all_token_counts in iter:
|
| 305 |
yield chatbot, history, status_text, all_token_counts
|
|
@@ -315,8 +332,10 @@ def predict(
|
|
| 315 |
top_p,
|
| 316 |
temperature,
|
| 317 |
selected_model,
|
|
|
|
| 318 |
)
|
| 319 |
yield chatbot, history, status_text, all_token_counts
|
|
|
|
| 320 |
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
|
| 321 |
if len(history) > 1 and history[-1]["content"] != inputs:
|
| 322 |
logging.info(
|
|
@@ -325,10 +344,20 @@ def predict(
|
|
| 325 |
+ f"{history[-1]['content']}"
|
| 326 |
+ colorama.Style.RESET_ALL
|
| 327 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
if stream:
|
| 329 |
max_token = max_token_streaming
|
| 330 |
else:
|
| 331 |
max_token = max_token_all
|
|
|
|
| 332 |
if sum(all_token_counts) > max_token and should_check_token_count:
|
| 333 |
status_text = f"精简token中{all_token_counts}/{max_token}"
|
| 334 |
logging.info(status_text)
|
|
|
|
| 6 |
import json
|
| 7 |
import os
|
| 8 |
import requests
|
| 9 |
+
import urllib3
|
| 10 |
|
| 11 |
from tqdm import tqdm
|
| 12 |
import colorama
|
|
|
|
| 100 |
top_p,
|
| 101 |
temperature,
|
| 102 |
selected_model,
|
| 103 |
+
fake_input=None
|
| 104 |
):
|
| 105 |
def get_return_value():
|
| 106 |
return chatbot, history, status_text, all_token_counts
|
|
|
|
| 111 |
status_text = "开始实时传输回答……"
|
| 112 |
history.append(construct_user(inputs))
|
| 113 |
history.append(construct_assistant(""))
|
| 114 |
+
if fake_input:
|
| 115 |
+
chatbot.append((parse_text(fake_input), ""))
|
| 116 |
+
else:
|
| 117 |
+
chatbot.append((parse_text(inputs), ""))
|
| 118 |
user_token_count = 0
|
| 119 |
if len(all_token_counts) == 0:
|
| 120 |
system_prompt_token_count = count_token(construct_system(system_prompt))
|
|
|
|
| 189 |
yield get_return_value()
|
| 190 |
break
|
| 191 |
history[-1] = construct_assistant(partial_words)
|
| 192 |
+
chatbot[-1] = (chatbot[-1][0], parse_text(partial_words))
|
| 193 |
all_token_counts[-1] += 1
|
| 194 |
yield get_return_value()
|
| 195 |
|
|
|
|
| 204 |
top_p,
|
| 205 |
temperature,
|
| 206 |
selected_model,
|
| 207 |
+
fake_input=None
|
| 208 |
):
|
| 209 |
logging.info("一次性回答模式")
|
| 210 |
history.append(construct_user(inputs))
|
| 211 |
history.append(construct_assistant(""))
|
| 212 |
+
if fake_input:
|
| 213 |
+
chatbot.append((parse_text(fake_input), ""))
|
| 214 |
+
else:
|
| 215 |
+
chatbot.append((parse_text(inputs), ""))
|
| 216 |
all_token_counts.append(count_token(construct_user(inputs)))
|
| 217 |
try:
|
| 218 |
response = get_response(
|
|
|
|
| 238 |
response = json.loads(response.text)
|
| 239 |
content = response["choices"][0]["message"]["content"]
|
| 240 |
history[-1] = construct_assistant(content)
|
| 241 |
+
chatbot[-1] = (chatbot[-1][0], parse_text(content))
|
| 242 |
total_token_count = response["usage"]["total_tokens"]
|
| 243 |
all_token_counts[-1] = total_token_count - sum(all_token_counts)
|
| 244 |
status_text = construct_token_message(total_token_count)
|
|
|
|
| 256 |
temperature,
|
| 257 |
stream=False,
|
| 258 |
selected_model=MODELS[0],
|
| 259 |
+
use_websearch=False,
|
| 260 |
files = None,
|
| 261 |
should_check_token_count=True,
|
| 262 |
): # repetition_penalty, top_k
|
|
|
|
| 271 |
history, chatbot, status_text = chat_ai(openai_api_key, index, inputs, history, chatbot)
|
| 272 |
yield chatbot, history, status_text, all_token_counts
|
| 273 |
return
|
| 274 |
+
|
| 275 |
+
old_inputs = ""
|
| 276 |
+
link_references = []
|
| 277 |
+
if use_websearch:
|
| 278 |
+
search_results = ddg(inputs, max_results=5)
|
| 279 |
+
old_inputs = inputs
|
| 280 |
web_results = []
|
| 281 |
+
for idx, result in enumerate(search_results):
|
| 282 |
logging.info(f"搜索结果{idx + 1}:{result}")
|
| 283 |
+
domain_name = urllib3.util.parse_url(result["href"]).host
|
| 284 |
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
|
| 285 |
+
link_references.append(f"[{idx+1}]: [{domain_name}]({result['href']})")
|
| 286 |
inputs = (
|
| 287 |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
| 288 |
.replace("{query}", inputs)
|
| 289 |
+
.replace("{web_results}", "\n\n".join(web_results))
|
| 290 |
)
|
| 291 |
+
|
| 292 |
if len(openai_api_key) != 51:
|
| 293 |
status_text = standard_error_msg + no_apikey_msg
|
| 294 |
logging.info(status_text)
|
|
|
|
| 301 |
history[-2] = construct_user(inputs)
|
| 302 |
yield chatbot, history, status_text, all_token_counts
|
| 303 |
return
|
| 304 |
+
|
| 305 |
+
yield chatbot, history, "开始生成回答……", all_token_counts
|
| 306 |
+
|
| 307 |
if stream:
|
| 308 |
logging.info("使用流式传输")
|
| 309 |
iter = stream_predict(
|
|
|
|
| 316 |
top_p,
|
| 317 |
temperature,
|
| 318 |
selected_model,
|
| 319 |
+
fake_input=old_inputs
|
| 320 |
)
|
| 321 |
for chatbot, history, status_text, all_token_counts in iter:
|
| 322 |
yield chatbot, history, status_text, all_token_counts
|
|
|
|
| 332 |
top_p,
|
| 333 |
temperature,
|
| 334 |
selected_model,
|
| 335 |
+
fake_input=old_inputs
|
| 336 |
)
|
| 337 |
yield chatbot, history, status_text, all_token_counts
|
| 338 |
+
|
| 339 |
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
|
| 340 |
if len(history) > 1 and history[-1]["content"] != inputs:
|
| 341 |
logging.info(
|
|
|
|
| 344 |
+ f"{history[-1]['content']}"
|
| 345 |
+ colorama.Style.RESET_ALL
|
| 346 |
)
|
| 347 |
+
|
| 348 |
+
if use_websearch:
|
| 349 |
+
response = history[-1]['content']
|
| 350 |
+
response += "\n\n" + "\n".join(link_references)
|
| 351 |
+
logging.info(f"Added link references.")
|
| 352 |
+
logging.info(response)
|
| 353 |
+
chatbot[-1] = (parse_text(old_inputs), response)
|
| 354 |
+
yield chatbot, history, status_text, all_token_counts
|
| 355 |
+
|
| 356 |
if stream:
|
| 357 |
max_token = max_token_streaming
|
| 358 |
else:
|
| 359 |
max_token = max_token_all
|
| 360 |
+
|
| 361 |
if sum(all_token_counts) > max_token and should_check_token_count:
|
| 362 |
status_text = f"精简token中{all_token_counts}/{max_token}"
|
| 363 |
logging.info(status_text)
|