Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
·
0ce1a9f
1
Parent(s):
6a88a02
去除llama index,转而使用langchain。索引支持更多文件格式。
Browse files- ChuanhuChatbot.py +0 -1
- modules/{llama_func.py → index_func.py} +35 -54
- modules/models/base_model.py +6 -39
- modules/models/models.py +1 -1
- modules/overwrites.py +1 -1
- requirements.txt +2 -1
ChuanhuChatbot.py
CHANGED
|
@@ -15,7 +15,6 @@ from modules.models.models import get_model
|
|
| 15 |
|
| 16 |
gr.Chatbot._postprocess_chat_messages = postprocess_chat_messages
|
| 17 |
gr.Chatbot.postprocess = postprocess
|
| 18 |
-
PromptHelper.compact_text_chunks = compact_text_chunks
|
| 19 |
|
| 20 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
| 21 |
customCSS = f.read()
|
|
|
|
| 15 |
|
| 16 |
gr.Chatbot._postprocess_chat_messages = postprocess_chat_messages
|
| 17 |
gr.Chatbot.postprocess = postprocess
|
|
|
|
| 18 |
|
| 19 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
| 20 |
customCSS = f.read()
|
modules/{llama_func.py → index_func.py}
RENAMED
|
@@ -1,14 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
|
| 4 |
-
from llama_index import download_loader
|
| 5 |
-
from llama_index import (
|
| 6 |
-
Document,
|
| 7 |
-
LLMPredictor,
|
| 8 |
-
PromptHelper,
|
| 9 |
-
QuestionAnswerPrompt,
|
| 10 |
-
RefinePrompt,
|
| 11 |
-
)
|
| 12 |
import colorama
|
| 13 |
import PyPDF2
|
| 14 |
from tqdm import tqdm
|
|
@@ -40,6 +32,10 @@ def block_split(text):
|
|
| 40 |
|
| 41 |
|
| 42 |
def get_documents(file_src):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
documents = []
|
| 44 |
logging.debug("Loading documents...")
|
| 45 |
logging.debug(f"file_src: {file_src}")
|
|
@@ -63,34 +59,39 @@ def get_documents(file_src):
|
|
| 63 |
pdfReader = PyPDF2.PdfReader(pdfFileObj)
|
| 64 |
for page in tqdm(pdfReader.pages):
|
| 65 |
pdftext += page.extract_text()
|
| 66 |
-
|
| 67 |
elif file_type == ".docx":
|
| 68 |
logging.debug("Loading Word...")
|
| 69 |
-
|
| 70 |
-
loader =
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
elif file_type == ".epub":
|
| 73 |
logging.debug("Loading EPUB...")
|
| 74 |
-
|
| 75 |
-
loader =
|
| 76 |
-
|
| 77 |
elif file_type == ".xlsx":
|
| 78 |
logging.debug("Loading Excel...")
|
| 79 |
text_list = excel_to_string(filepath)
|
| 80 |
for elem in text_list:
|
| 81 |
-
documents.append(Document(elem))
|
| 82 |
continue
|
| 83 |
else:
|
| 84 |
logging.debug("Loading text file...")
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
except Exception as e:
|
| 88 |
logging.error(f"Error loading file: {filename}")
|
| 89 |
pass
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
documents += [Document(text)]
|
| 94 |
logging.debug("Documents loaded.")
|
| 95 |
return documents
|
| 96 |
|
|
@@ -106,8 +107,7 @@ def construct_index(
|
|
| 106 |
separator=" ",
|
| 107 |
):
|
| 108 |
from langchain.chat_models import ChatOpenAI
|
| 109 |
-
from langchain.
|
| 110 |
-
from llama_index import GPTVectorStoreIndex, ServiceContext, LangchainEmbedding, OpenAIEmbedding
|
| 111 |
|
| 112 |
if api_key:
|
| 113 |
os.environ["OPENAI_API_KEY"] = api_key
|
|
@@ -118,38 +118,26 @@ def construct_index(
|
|
| 118 |
embedding_limit = None if embedding_limit == 0 else embedding_limit
|
| 119 |
separator = " " if separator == "" else separator
|
| 120 |
|
| 121 |
-
prompt_helper = PromptHelper(
|
| 122 |
-
max_input_size=max_input_size,
|
| 123 |
-
num_output=num_outputs,
|
| 124 |
-
max_chunk_overlap=max_chunk_overlap,
|
| 125 |
-
embedding_limit=embedding_limit,
|
| 126 |
-
chunk_size_limit=600,
|
| 127 |
-
separator=separator,
|
| 128 |
-
)
|
| 129 |
index_name = get_index_name(file_src)
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
logging.info("找到了缓存的索引文件,加载中……")
|
| 132 |
-
return
|
| 133 |
else:
|
| 134 |
try:
|
| 135 |
documents = get_documents(file_src)
|
| 136 |
-
if local_embedding:
|
| 137 |
-
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2"))
|
| 138 |
-
else:
|
| 139 |
-
embed_model = OpenAIEmbedding()
|
| 140 |
logging.info("构建索引中……")
|
| 141 |
with retrieve_proxy():
|
| 142 |
-
|
| 143 |
-
prompt_helper=prompt_helper,
|
| 144 |
-
chunk_size_limit=chunk_size_limit,
|
| 145 |
-
embed_model=embed_model,
|
| 146 |
-
)
|
| 147 |
-
index = GPTVectorStoreIndex.from_documents(
|
| 148 |
-
documents, service_context=service_context
|
| 149 |
-
)
|
| 150 |
logging.debug("索引构建完成!")
|
| 151 |
os.makedirs("./index", exist_ok=True)
|
| 152 |
-
index.
|
| 153 |
logging.debug("索引已保存至本地!")
|
| 154 |
return index
|
| 155 |
|
|
@@ -157,10 +145,3 @@ def construct_index(
|
|
| 157 |
logging.error("索引构建失败!", e)
|
| 158 |
print(e)
|
| 159 |
return None
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
def add_space(text):
|
| 163 |
-
punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "}
|
| 164 |
-
for cn_punc, en_punc in punctuations.items():
|
| 165 |
-
text = text.replace(cn_punc, en_punc)
|
| 166 |
-
return text
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import colorama
|
| 5 |
import PyPDF2
|
| 6 |
from tqdm import tqdm
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
def get_documents(file_src):
|
| 35 |
+
from langchain.schema import Document
|
| 36 |
+
from langchain.text_splitter import TokenTextSplitter
|
| 37 |
+
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
|
| 38 |
+
|
| 39 |
documents = []
|
| 40 |
logging.debug("Loading documents...")
|
| 41 |
logging.debug(f"file_src: {file_src}")
|
|
|
|
| 59 |
pdfReader = PyPDF2.PdfReader(pdfFileObj)
|
| 60 |
for page in tqdm(pdfReader.pages):
|
| 61 |
pdftext += page.extract_text()
|
| 62 |
+
texts = Document(page_content=pdftext, metadata={"source": filepath})
|
| 63 |
elif file_type == ".docx":
|
| 64 |
logging.debug("Loading Word...")
|
| 65 |
+
from langchain.document_loaders import UnstructuredWordDocumentLoader
|
| 66 |
+
loader = UnstructuredWordDocumentLoader(filepath)
|
| 67 |
+
texts = loader.load()
|
| 68 |
+
elif file_type == ".pptx":
|
| 69 |
+
logging.debug("Loading PowerPoint...")
|
| 70 |
+
from langchain.document_loaders import UnstructuredPowerPointLoader
|
| 71 |
+
loader = UnstructuredPowerPointLoader(filepath)
|
| 72 |
+
texts = loader.load()
|
| 73 |
elif file_type == ".epub":
|
| 74 |
logging.debug("Loading EPUB...")
|
| 75 |
+
from langchain.document_loaders import UnstructuredEPubLoader
|
| 76 |
+
loader = UnstructuredEPubLoader(filepath)
|
| 77 |
+
texts = loader.load()
|
| 78 |
elif file_type == ".xlsx":
|
| 79 |
logging.debug("Loading Excel...")
|
| 80 |
text_list = excel_to_string(filepath)
|
| 81 |
for elem in text_list:
|
| 82 |
+
documents.append(Document(page_content=elem, metadata={"source": filepath}))
|
| 83 |
continue
|
| 84 |
else:
|
| 85 |
logging.debug("Loading text file...")
|
| 86 |
+
from langchain.document_loaders import TextLoader
|
| 87 |
+
loader = TextLoader(filepath, "utf8")
|
| 88 |
+
texts = loader.load()
|
| 89 |
except Exception as e:
|
| 90 |
logging.error(f"Error loading file: {filename}")
|
| 91 |
pass
|
| 92 |
+
|
| 93 |
+
texts = text_splitter.split_documents(texts)
|
| 94 |
+
documents.extend(texts)
|
|
|
|
| 95 |
logging.debug("Documents loaded.")
|
| 96 |
return documents
|
| 97 |
|
|
|
|
| 107 |
separator=" ",
|
| 108 |
):
|
| 109 |
from langchain.chat_models import ChatOpenAI
|
| 110 |
+
from langchain.vectorstores import FAISS
|
|
|
|
| 111 |
|
| 112 |
if api_key:
|
| 113 |
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
| 118 |
embedding_limit = None if embedding_limit == 0 else embedding_limit
|
| 119 |
separator = " " if separator == "" else separator
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
index_name = get_index_name(file_src)
|
| 122 |
+
index_path = f"./index/{index_name}"
|
| 123 |
+
if local_embedding:
|
| 124 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 125 |
+
embeddings = HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2")
|
| 126 |
+
else:
|
| 127 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 128 |
+
embeddings = OpenAIEmbeddings()
|
| 129 |
+
if os.path.exists(index_path):
|
| 130 |
logging.info("找到了缓存的索引文件,加载中……")
|
| 131 |
+
return FAISS.load_local(index_path, embeddings)
|
| 132 |
else:
|
| 133 |
try:
|
| 134 |
documents = get_documents(file_src)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
logging.info("构建索引中……")
|
| 136 |
with retrieve_proxy():
|
| 137 |
+
index = FAISS.from_documents(documents, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
logging.debug("索引构建完成!")
|
| 139 |
os.makedirs("./index", exist_ok=True)
|
| 140 |
+
index.save_local(index_path)
|
| 141 |
logging.debug("索引已保存至本地!")
|
| 142 |
return index
|
| 143 |
|
|
|
|
| 145 |
logging.error("索引构建失败!", e)
|
| 146 |
print(e)
|
| 147 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/models/base_model.py
CHANGED
|
@@ -19,7 +19,7 @@ import aiohttp
|
|
| 19 |
from enum import Enum
|
| 20 |
|
| 21 |
from ..presets import *
|
| 22 |
-
from ..
|
| 23 |
from ..utils import *
|
| 24 |
from .. import shared
|
| 25 |
from ..config import retrieve_proxy
|
|
@@ -192,53 +192,20 @@ class BaseLLMModel:
|
|
| 192 |
limited_context = False
|
| 193 |
fake_inputs = real_inputs
|
| 194 |
if files:
|
| 195 |
-
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
|
| 196 |
-
from llama_index.indices.query.schema import QueryBundle
|
| 197 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 198 |
-
from langchain.
|
| 199 |
-
from llama_index import (
|
| 200 |
-
GPTSimpleVectorIndex,
|
| 201 |
-
ServiceContext,
|
| 202 |
-
LangchainEmbedding,
|
| 203 |
-
OpenAIEmbedding,
|
| 204 |
-
)
|
| 205 |
limited_context = True
|
| 206 |
msg = "加载索引中……"
|
| 207 |
logging.info(msg)
|
| 208 |
-
# yield chatbot + [(inputs, "")], msg
|
| 209 |
index = construct_index(self.api_key, file_src=files)
|
| 210 |
assert index is not None, "获取索引失败"
|
| 211 |
msg = "索引获取成功,生成回答中……"
|
| 212 |
logging.info(msg)
|
| 213 |
-
if local_embedding or self.model_type != ModelType.OpenAI:
|
| 214 |
-
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2"))
|
| 215 |
-
else:
|
| 216 |
-
embed_model = OpenAIEmbedding()
|
| 217 |
-
# yield chatbot + [(inputs, "")], msg
|
| 218 |
with retrieve_proxy():
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
chunk_size_limit=600,
|
| 224 |
-
)
|
| 225 |
-
from llama_index import ServiceContext
|
| 226 |
-
|
| 227 |
-
service_context = ServiceContext.from_defaults(
|
| 228 |
-
prompt_helper=prompt_helper, embed_model=embed_model
|
| 229 |
-
)
|
| 230 |
-
query_object = GPTVectorStoreIndexQuery(
|
| 231 |
-
index.index_struct,
|
| 232 |
-
service_context=service_context,
|
| 233 |
-
similarity_top_k=5,
|
| 234 |
-
vector_store=index._vector_store,
|
| 235 |
-
docstore=index._docstore,
|
| 236 |
-
response_synthesizer=None
|
| 237 |
-
)
|
| 238 |
-
query_bundle = QueryBundle(real_inputs)
|
| 239 |
-
nodes = query_object.retrieve(query_bundle)
|
| 240 |
-
reference_results = [n.node.text for n in nodes]
|
| 241 |
-
reference_results = add_source_numbers(reference_results, use_source=False)
|
| 242 |
display_append = add_details(reference_results)
|
| 243 |
display_append = "\n\n" + "".join(display_append)
|
| 244 |
real_inputs = (
|
|
|
|
| 19 |
from enum import Enum
|
| 20 |
|
| 21 |
from ..presets import *
|
| 22 |
+
from ..index_func import *
|
| 23 |
from ..utils import *
|
| 24 |
from .. import shared
|
| 25 |
from ..config import retrieve_proxy
|
|
|
|
| 192 |
limited_context = False
|
| 193 |
fake_inputs = real_inputs
|
| 194 |
if files:
|
|
|
|
|
|
|
| 195 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 196 |
+
from langchain.vectorstores.base import VectorStoreRetriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
limited_context = True
|
| 198 |
msg = "加载索引中……"
|
| 199 |
logging.info(msg)
|
|
|
|
| 200 |
index = construct_index(self.api_key, file_src=files)
|
| 201 |
assert index is not None, "获取索引失败"
|
| 202 |
msg = "索引获取成功,生成回答中……"
|
| 203 |
logging.info(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
with retrieve_proxy():
|
| 205 |
+
retriever = VectorStoreRetriever(vectorstore=index, search_type="similarity_score_threshold",search_kwargs={"k":6, "score_threshold": 0.5})
|
| 206 |
+
relevant_documents = retriever.get_relevant_documents(real_inputs)
|
| 207 |
+
reference_results = [[d.page_content.strip("�"), os.path.basename(d.metadata["source"])] for d in relevant_documents]
|
| 208 |
+
reference_results = add_source_numbers(reference_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
display_append = add_details(reference_results)
|
| 210 |
display_append = "\n\n" + "".join(display_append)
|
| 211 |
real_inputs = (
|
modules/models/models.py
CHANGED
|
@@ -22,7 +22,7 @@ from enum import Enum
|
|
| 22 |
import uuid
|
| 23 |
|
| 24 |
from ..presets import *
|
| 25 |
-
from ..
|
| 26 |
from ..utils import *
|
| 27 |
from .. import shared
|
| 28 |
from ..config import retrieve_proxy, usage_limit
|
|
|
|
| 22 |
import uuid
|
| 23 |
|
| 24 |
from ..presets import *
|
| 25 |
+
from ..index_func import *
|
| 26 |
from ..utils import *
|
| 27 |
from .. import shared
|
| 28 |
from ..config import retrieve_proxy, usage_limit
|
modules/overwrites.py
CHANGED
|
@@ -7,7 +7,7 @@ import mdtex2html
|
|
| 7 |
from gradio_client import utils as client_utils
|
| 8 |
|
| 9 |
from modules.presets import *
|
| 10 |
-
from modules.
|
| 11 |
from modules.config import render_latex
|
| 12 |
|
| 13 |
def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]:
|
|
|
|
| 7 |
from gradio_client import utils as client_utils
|
| 8 |
|
| 9 |
from modules.presets import *
|
| 10 |
+
from modules.index_func import *
|
| 11 |
from modules.config import render_latex
|
| 12 |
|
| 13 |
def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]:
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
gradio==3.
|
| 2 |
gradio_client==0.1.4
|
| 3 |
mdtex2html
|
| 4 |
pypinyin
|
|
@@ -16,3 +16,4 @@ pdfplumber
|
|
| 16 |
pandas
|
| 17 |
commentjson
|
| 18 |
openpyxl
|
|
|
|
|
|
| 1 |
+
gradio==3.28.0
|
| 2 |
gradio_client==0.1.4
|
| 3 |
mdtex2html
|
| 4 |
pypinyin
|
|
|
|
| 16 |
pandas
|
| 17 |
commentjson
|
| 18 |
openpyxl
|
| 19 |
+
pandocs
|