Spaces:
Sleeping
Sleeping
将本地LLM定义为全局变量,防止多次调用。make class great again
Browse files- ChuanhuChatbot.py +38 -32
- modules/models.py +138 -222
- modules/presets.py +5 -0
- modules/utils.py +76 -0
ChuanhuChatbot.py
CHANGED
|
@@ -10,7 +10,7 @@ from modules.config import *
|
|
| 10 |
from modules.utils import *
|
| 11 |
from modules.presets import *
|
| 12 |
from modules.overwrites import *
|
| 13 |
-
from modules.models import
|
| 14 |
|
| 15 |
gr.Chatbot.postprocess = postprocess
|
| 16 |
PromptHelper.compact_text_chunks = compact_text_chunks
|
|
@@ -18,11 +18,14 @@ PromptHelper.compact_text_chunks = compact_text_chunks
|
|
| 18 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
| 19 |
customCSS = f.read()
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
| 22 |
user_name = gr.State("")
|
| 23 |
promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2))
|
| 24 |
user_question = gr.State("")
|
| 25 |
-
current_model = gr.State(
|
| 26 |
|
| 27 |
topic = gr.State("未命名对话历史记录")
|
| 28 |
|
|
@@ -264,8 +267,9 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
| 264 |
gr.Markdown(CHUANHU_DESCRIPTION)
|
| 265 |
gr.HTML(FOOTER.format(versions=versions_html()), elem_id="footer")
|
| 266 |
chatgpt_predict_args = dict(
|
| 267 |
-
fn=
|
| 268 |
inputs=[
|
|
|
|
| 269 |
user_question,
|
| 270 |
chatbot,
|
| 271 |
use_streaming_checkbox,
|
|
@@ -297,18 +301,18 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
| 297 |
)
|
| 298 |
|
| 299 |
get_usage_args = dict(
|
| 300 |
-
fn=
|
| 301 |
)
|
| 302 |
|
| 303 |
load_history_from_file_args = dict(
|
| 304 |
-
fn=
|
| 305 |
-
inputs=[historyFileSelectDropdown, chatbot, user_name],
|
| 306 |
outputs=[saveFileName, systemPromptTxt, chatbot]
|
| 307 |
)
|
| 308 |
|
| 309 |
|
| 310 |
# Chatbot
|
| 311 |
-
cancelBtn.click(
|
| 312 |
|
| 313 |
user_input.submit(**transfer_input_args).then(**chatgpt_predict_args).then(**end_outputing_args)
|
| 314 |
user_input.submit(**get_usage_args)
|
|
@@ -317,15 +321,17 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
| 317 |
submitBtn.click(**get_usage_args)
|
| 318 |
|
| 319 |
emptyBtn.click(
|
| 320 |
-
|
|
|
|
| 321 |
outputs=[chatbot, status_display],
|
| 322 |
show_progress=True,
|
| 323 |
)
|
| 324 |
emptyBtn.click(**reset_textbox_args)
|
| 325 |
|
| 326 |
retryBtn.click(**start_outputing_args).then(
|
| 327 |
-
|
| 328 |
[
|
|
|
|
| 329 |
chatbot,
|
| 330 |
use_streaming_checkbox,
|
| 331 |
use_websearch_checkbox,
|
|
@@ -338,14 +344,14 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
| 338 |
retryBtn.click(**get_usage_args)
|
| 339 |
|
| 340 |
delFirstBtn.click(
|
| 341 |
-
|
| 342 |
-
|
| 343 |
[status_display],
|
| 344 |
)
|
| 345 |
|
| 346 |
delLastBtn.click(
|
| 347 |
-
|
| 348 |
-
[chatbot],
|
| 349 |
[chatbot, status_display],
|
| 350 |
show_progress=False
|
| 351 |
)
|
|
@@ -353,14 +359,14 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
| 353 |
two_column.change(update_doc_config, [two_column], None)
|
| 354 |
|
| 355 |
# LLM Models
|
| 356 |
-
keyTxt.change(
|
| 357 |
keyTxt.submit(**get_usage_args)
|
| 358 |
-
single_turn_checkbox.change(
|
| 359 |
-
model_select_dropdown.change(
|
| 360 |
-
lora_select_dropdown.change(
|
| 361 |
|
| 362 |
# Template
|
| 363 |
-
systemPromptTxt.change(
|
| 364 |
templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown])
|
| 365 |
templateFileSelectDropdown.change(
|
| 366 |
load_template,
|
|
@@ -377,15 +383,15 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
| 377 |
|
| 378 |
# S&L
|
| 379 |
saveHistoryBtn.click(
|
| 380 |
-
|
| 381 |
-
[saveFileName, chatbot, user_name],
|
| 382 |
downloadFile,
|
| 383 |
show_progress=True,
|
| 384 |
)
|
| 385 |
saveHistoryBtn.click(get_history_names, [gr.State(False), user_name], [historyFileSelectDropdown])
|
| 386 |
exportMarkdownBtn.click(
|
| 387 |
-
|
| 388 |
-
[saveFileName, chatbot, user_name],
|
| 389 |
downloadFile,
|
| 390 |
show_progress=True,
|
| 391 |
)
|
|
@@ -394,16 +400,16 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
| 394 |
downloadFile.change(**load_history_from_file_args)
|
| 395 |
|
| 396 |
# Advanced
|
| 397 |
-
max_context_length_slider.change(
|
| 398 |
-
temperature_slider.change(
|
| 399 |
-
top_p_slider.change(
|
| 400 |
-
n_choices_slider.change(
|
| 401 |
-
stop_sequence_txt.change(
|
| 402 |
-
max_generation_slider.change(
|
| 403 |
-
presence_penalty_slider.change(
|
| 404 |
-
frequency_penalty_slider.change(
|
| 405 |
-
logit_bias_txt.change(
|
| 406 |
-
user_identifier_txt.change(
|
| 407 |
|
| 408 |
default_btn.click(
|
| 409 |
reset_default, [], [apihostTxt, proxyTxt, status_display], show_progress=True
|
|
|
|
| 10 |
from modules.utils import *
|
| 11 |
from modules.presets import *
|
| 12 |
from modules.overwrites import *
|
| 13 |
+
from modules.models import get_model
|
| 14 |
|
| 15 |
gr.Chatbot.postprocess = postprocess
|
| 16 |
PromptHelper.compact_text_chunks = compact_text_chunks
|
|
|
|
| 18 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
| 19 |
customCSS = f.read()
|
| 20 |
|
| 21 |
+
def create_new_model():
|
| 22 |
+
return get_model(model_name = MODELS[DEFAULT_MODEL], access_key = my_api_key)[0]
|
| 23 |
+
|
| 24 |
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
| 25 |
user_name = gr.State("")
|
| 26 |
promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2))
|
| 27 |
user_question = gr.State("")
|
| 28 |
+
current_model = gr.State(create_new_model)
|
| 29 |
|
| 30 |
topic = gr.State("未命名对话历史记录")
|
| 31 |
|
|
|
|
| 267 |
gr.Markdown(CHUANHU_DESCRIPTION)
|
| 268 |
gr.HTML(FOOTER.format(versions=versions_html()), elem_id="footer")
|
| 269 |
chatgpt_predict_args = dict(
|
| 270 |
+
fn=predict,
|
| 271 |
inputs=[
|
| 272 |
+
current_model,
|
| 273 |
user_question,
|
| 274 |
chatbot,
|
| 275 |
use_streaming_checkbox,
|
|
|
|
| 301 |
)
|
| 302 |
|
| 303 |
get_usage_args = dict(
|
| 304 |
+
fn=billing_info, inputs=[current_model], outputs=[usageTxt], show_progress=False
|
| 305 |
)
|
| 306 |
|
| 307 |
load_history_from_file_args = dict(
|
| 308 |
+
fn=load_chat_history,
|
| 309 |
+
inputs=[current_model, historyFileSelectDropdown, chatbot, user_name],
|
| 310 |
outputs=[saveFileName, systemPromptTxt, chatbot]
|
| 311 |
)
|
| 312 |
|
| 313 |
|
| 314 |
# Chatbot
|
| 315 |
+
cancelBtn.click(interrupt, [current_model], [])
|
| 316 |
|
| 317 |
user_input.submit(**transfer_input_args).then(**chatgpt_predict_args).then(**end_outputing_args)
|
| 318 |
user_input.submit(**get_usage_args)
|
|
|
|
| 321 |
submitBtn.click(**get_usage_args)
|
| 322 |
|
| 323 |
emptyBtn.click(
|
| 324 |
+
reset,
|
| 325 |
+
inputs=[current_model],
|
| 326 |
outputs=[chatbot, status_display],
|
| 327 |
show_progress=True,
|
| 328 |
)
|
| 329 |
emptyBtn.click(**reset_textbox_args)
|
| 330 |
|
| 331 |
retryBtn.click(**start_outputing_args).then(
|
| 332 |
+
retry,
|
| 333 |
[
|
| 334 |
+
current_model,
|
| 335 |
chatbot,
|
| 336 |
use_streaming_checkbox,
|
| 337 |
use_websearch_checkbox,
|
|
|
|
| 344 |
retryBtn.click(**get_usage_args)
|
| 345 |
|
| 346 |
delFirstBtn.click(
|
| 347 |
+
delete_first_conversation,
|
| 348 |
+
[current_model],
|
| 349 |
[status_display],
|
| 350 |
)
|
| 351 |
|
| 352 |
delLastBtn.click(
|
| 353 |
+
delete_last_conversation,
|
| 354 |
+
[current_model, chatbot],
|
| 355 |
[chatbot, status_display],
|
| 356 |
show_progress=False
|
| 357 |
)
|
|
|
|
| 359 |
two_column.change(update_doc_config, [two_column], None)
|
| 360 |
|
| 361 |
# LLM Models
|
| 362 |
+
keyTxt.change(set_key, [current_model, keyTxt], [status_display]).then(**get_usage_args)
|
| 363 |
keyTxt.submit(**get_usage_args)
|
| 364 |
+
single_turn_checkbox.change(set_single_turn, [current_model, single_turn_checkbox], None)
|
| 365 |
+
model_select_dropdown.change(get_model, [model_select_dropdown, lora_select_dropdown, keyTxt, temperature_slider, top_p_slider, systemPromptTxt], [current_model, status_display, lora_select_dropdown], show_progress=True)
|
| 366 |
+
lora_select_dropdown.change(get_model, [model_select_dropdown, lora_select_dropdown, keyTxt, temperature_slider, top_p_slider, systemPromptTxt], [current_model, status_display], show_progress=True)
|
| 367 |
|
| 368 |
# Template
|
| 369 |
+
systemPromptTxt.change(set_system_prompt, [current_model, systemPromptTxt], None)
|
| 370 |
templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown])
|
| 371 |
templateFileSelectDropdown.change(
|
| 372 |
load_template,
|
|
|
|
| 383 |
|
| 384 |
# S&L
|
| 385 |
saveHistoryBtn.click(
|
| 386 |
+
save_chat_history,
|
| 387 |
+
[current_model, saveFileName, chatbot, user_name],
|
| 388 |
downloadFile,
|
| 389 |
show_progress=True,
|
| 390 |
)
|
| 391 |
saveHistoryBtn.click(get_history_names, [gr.State(False), user_name], [historyFileSelectDropdown])
|
| 392 |
exportMarkdownBtn.click(
|
| 393 |
+
export_markdown,
|
| 394 |
+
[current_model, saveFileName, chatbot, user_name],
|
| 395 |
downloadFile,
|
| 396 |
show_progress=True,
|
| 397 |
)
|
|
|
|
| 400 |
downloadFile.change(**load_history_from_file_args)
|
| 401 |
|
| 402 |
# Advanced
|
| 403 |
+
max_context_length_slider.change(set_token_upper_limit, [current_model, max_context_length_slider], None)
|
| 404 |
+
temperature_slider.change(set_temperature, [current_model, temperature_slider], None)
|
| 405 |
+
top_p_slider.change(set_top_p, [current_model, top_p_slider], None)
|
| 406 |
+
n_choices_slider.change(set_n_choices, [current_model, n_choices_slider], None)
|
| 407 |
+
stop_sequence_txt.change(set_stop_sequence, [current_model, stop_sequence_txt], None)
|
| 408 |
+
max_generation_slider.change(set_max_tokens, [current_model, max_generation_slider], None)
|
| 409 |
+
presence_penalty_slider.change(set_presence_penalty, [current_model, presence_penalty_slider], None)
|
| 410 |
+
frequency_penalty_slider.change(set_frequency_penalty, [current_model, frequency_penalty_slider], None)
|
| 411 |
+
logit_bias_txt.change(set_logit_bias, [current_model, logit_bias_txt], None)
|
| 412 |
+
user_identifier_txt.change(set_user_identifier, [current_model, user_identifier_txt], None)
|
| 413 |
|
| 414 |
default_btn.click(
|
| 415 |
reset_default, [], [apihostTxt, proxyTxt, status_display], show_progress=True
|
modules/models.py
CHANGED
|
@@ -207,51 +207,52 @@ class OpenAIClient(BaseLLMModel):
|
|
| 207 |
continue
|
| 208 |
if error_msg:
|
| 209 |
raise Exception(error_msg)
|
| 210 |
-
|
| 211 |
|
| 212 |
class ChatGLM_Client(BaseLLMModel):
|
| 213 |
def __init__(self, model_name) -> None:
|
| 214 |
super().__init__(model_name=model_name)
|
| 215 |
from transformers import AutoTokenizer, AutoModel
|
| 216 |
import torch
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
)
|
| 231 |
-
quantified = False
|
| 232 |
-
if "int4" in model_name:
|
| 233 |
-
quantified = True
|
| 234 |
-
if quantified:
|
| 235 |
-
model = AutoModel.from_pretrained(
|
| 236 |
-
model_source, trust_remote_code=True
|
| 237 |
-
).half()
|
| 238 |
-
else:
|
| 239 |
-
model = AutoModel.from_pretrained(
|
| 240 |
model_source, trust_remote_code=True
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
def _get_glm_style_input(self):
|
| 257 |
history = [x["content"] for x in self.history]
|
|
@@ -265,13 +266,13 @@ class ChatGLM_Client(BaseLLMModel):
|
|
| 265 |
|
| 266 |
def get_answer_at_once(self):
|
| 267 |
history, query = self._get_glm_style_input()
|
| 268 |
-
response, _ =
|
| 269 |
return response, len(response)
|
| 270 |
|
| 271 |
def get_answer_stream_iter(self):
|
| 272 |
history, query = self._get_glm_style_input()
|
| 273 |
-
for response, history in
|
| 274 |
-
|
| 275 |
query,
|
| 276 |
history,
|
| 277 |
max_length=self.token_upper_limit,
|
|
@@ -292,53 +293,53 @@ class LLaMA_Client(BaseLLMModel):
|
|
| 292 |
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
| 293 |
from lmflow.models.auto_model import AutoModel
|
| 294 |
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
|
| 295 |
-
|
| 296 |
-
if os.path.exists("models"):
|
| 297 |
-
model_dirs = os.listdir("models")
|
| 298 |
-
if model_name in model_dirs:
|
| 299 |
-
model_path = f"models/{model_name}"
|
| 300 |
-
if model_path is not None:
|
| 301 |
-
model_source = model_path
|
| 302 |
-
else:
|
| 303 |
-
model_source = f"decapoda-research/{model_name}"
|
| 304 |
-
# raise Exception(f"models目录下没有这个模型: {model_name}")
|
| 305 |
-
if lora_path is not None:
|
| 306 |
-
lora_path = f"lora/{lora_path}"
|
| 307 |
self.max_generation_token = 1000
|
| 308 |
-
|
| 309 |
-
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
| 310 |
-
pipeline_args = InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
| 311 |
-
|
| 312 |
-
with open(pipeline_args.deepspeed, "r") as f:
|
| 313 |
-
ds_config = json.load(f)
|
| 314 |
-
|
| 315 |
-
self.model = AutoModel.get_model(
|
| 316 |
-
model_args,
|
| 317 |
-
tune_strategy="none",
|
| 318 |
-
ds_config=ds_config,
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
# We don't need input data
|
| 322 |
data_args = DatasetArguments(dataset_path=None)
|
| 323 |
self.dataset = Dataset(data_args)
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
# Chats
|
| 333 |
-
model_name = model_args.model_name_or_path
|
| 334 |
-
if model_args.lora_model_path is not None:
|
| 335 |
-
|
| 336 |
|
| 337 |
# context = (
|
| 338 |
# "You are a helpful assistant who follows the given instructions"
|
| 339 |
# " unconditionally."
|
| 340 |
# )
|
| 341 |
-
|
| 342 |
|
| 343 |
def _get_llama_style_input(self):
|
| 344 |
history = []
|
|
@@ -358,8 +359,8 @@ class LLaMA_Client(BaseLLMModel):
|
|
| 358 |
{"type": "text_only", "instances": [{"text": context}]}
|
| 359 |
)
|
| 360 |
|
| 361 |
-
output_dataset =
|
| 362 |
-
model=
|
| 363 |
dataset=input_dataset,
|
| 364 |
max_new_tokens=self.max_generation_token,
|
| 365 |
temperature=self.temperature,
|
|
@@ -376,8 +377,8 @@ class LLaMA_Client(BaseLLMModel):
|
|
| 376 |
input_dataset = self.dataset.from_dict(
|
| 377 |
{"type": "text_only", "instances": [{"text": context+partial_text}]}
|
| 378 |
)
|
| 379 |
-
output_dataset =
|
| 380 |
-
model=
|
| 381 |
dataset=input_dataset,
|
| 382 |
max_new_tokens=step,
|
| 383 |
temperature=self.temperature,
|
|
@@ -389,147 +390,62 @@ class LLaMA_Client(BaseLLMModel):
|
|
| 389 |
yield partial_text
|
| 390 |
|
| 391 |
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
)
|
| 425 |
-
elif model_type == ModelType.ChatGLM:
|
| 426 |
-
logging.info(f"正在加载ChatGLM模型: {model_name}")
|
| 427 |
-
model = ChatGLM_Client(model_name)
|
| 428 |
-
elif model_type == ModelType.LLaMA and lora_model_path == "":
|
| 429 |
-
msg = f"现在请为 {model_name} 选择LoRA模型"
|
| 430 |
-
logging.info(msg)
|
| 431 |
-
lora_selector_visibility = True
|
| 432 |
-
if os.path.isdir("lora"):
|
| 433 |
-
lora_choices = get_file_names("lora", plain=True, filetypes=[""])
|
| 434 |
-
lora_choices = ["No LoRA"] + lora_choices
|
| 435 |
-
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
| 436 |
-
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
| 437 |
-
dont_change_lora_selector = True
|
| 438 |
-
if lora_model_path == "No LoRA":
|
| 439 |
-
lora_model_path = None
|
| 440 |
-
msg += " + No LoRA"
|
| 441 |
-
else:
|
| 442 |
-
msg += f" + {lora_model_path}"
|
| 443 |
-
model = LLaMA_Client(model_name, lora_model_path)
|
| 444 |
-
elif model_type == ModelType.Unknown:
|
| 445 |
-
raise ValueError(f"未知模型: {model_name}")
|
| 446 |
logging.info(msg)
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
def interrupt(self, *args):
|
| 471 |
-
return self.model.interrupt(*args)
|
| 472 |
-
|
| 473 |
-
def reset(self, *args):
|
| 474 |
-
return self.model.reset(*args)
|
| 475 |
-
|
| 476 |
-
def retry(self, *args):
|
| 477 |
-
iter = self.model.retry(*args)
|
| 478 |
-
for i in iter:
|
| 479 |
-
yield i
|
| 480 |
-
|
| 481 |
-
def delete_first_conversation(self, *args):
|
| 482 |
-
return self.model.delete_first_conversation(*args)
|
| 483 |
-
|
| 484 |
-
def delete_last_conversation(self, *args):
|
| 485 |
-
return self.model.delete_last_conversation(*args)
|
| 486 |
-
|
| 487 |
-
def set_system_prompt(self, *args):
|
| 488 |
-
return self.model.set_system_prompt(*args)
|
| 489 |
-
|
| 490 |
-
def save_chat_history(self, *args):
|
| 491 |
-
return self.model.save_chat_history(*args)
|
| 492 |
-
|
| 493 |
-
def export_markdown(self, *args):
|
| 494 |
-
return self.model.export_markdown(*args)
|
| 495 |
-
|
| 496 |
-
def load_chat_history(self, *args):
|
| 497 |
-
return self.model.load_chat_history(*args)
|
| 498 |
-
|
| 499 |
-
def set_token_upper_limit(self, *args):
|
| 500 |
-
return self.model.set_token_upper_limit(*args)
|
| 501 |
-
|
| 502 |
-
def set_temperature(self, *args):
|
| 503 |
-
self.model.set_temperature(*args)
|
| 504 |
-
|
| 505 |
-
def set_top_p(self, *args):
|
| 506 |
-
self.model.set_top_p(*args)
|
| 507 |
-
|
| 508 |
-
def set_n_choices(self, *args):
|
| 509 |
-
self.model.set_n_choices(*args)
|
| 510 |
-
|
| 511 |
-
def set_stop_sequence(self, *args):
|
| 512 |
-
self.model.set_stop_sequence(*args)
|
| 513 |
-
|
| 514 |
-
def set_max_tokens(self, *args):
|
| 515 |
-
self.model.set_max_tokens(*args)
|
| 516 |
-
|
| 517 |
-
def set_presence_penalty(self, *args):
|
| 518 |
-
self.model.set_presence_penalty(*args)
|
| 519 |
-
|
| 520 |
-
def set_frequency_penalty(self, *args):
|
| 521 |
-
self.model.set_frequency_penalty(*args)
|
| 522 |
-
|
| 523 |
-
def set_logit_bias(self, *args):
|
| 524 |
-
self.model.set_logit_bias(*args)
|
| 525 |
-
|
| 526 |
-
def set_user_identifier(self, *args):
|
| 527 |
-
self.model.set_user_identifier(*args)
|
| 528 |
-
|
| 529 |
-
def set_single_turn(self, *args):
|
| 530 |
-
self.model.set_single_turn(*args)
|
| 531 |
-
|
| 532 |
-
|
| 533 |
|
| 534 |
|
| 535 |
if __name__ == "__main__":
|
|
@@ -538,7 +454,7 @@ if __name__ == "__main__":
|
|
| 538 |
# set logging level to debug
|
| 539 |
logging.basicConfig(level=logging.DEBUG)
|
| 540 |
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
|
| 541 |
-
client =
|
| 542 |
chatbot = []
|
| 543 |
stream = False
|
| 544 |
# 测试账单功能
|
|
|
|
| 207 |
continue
|
| 208 |
if error_msg:
|
| 209 |
raise Exception(error_msg)
|
| 210 |
+
|
| 211 |
|
| 212 |
class ChatGLM_Client(BaseLLMModel):
|
| 213 |
def __init__(self, model_name) -> None:
|
| 214 |
super().__init__(model_name=model_name)
|
| 215 |
from transformers import AutoTokenizer, AutoModel
|
| 216 |
import torch
|
| 217 |
+
global CHATGLM_TOKENIZER, CHATGLM_MODEL
|
| 218 |
+
if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
|
| 219 |
+
system_name = platform.system()
|
| 220 |
+
model_path=None
|
| 221 |
+
if os.path.exists("models"):
|
| 222 |
+
model_dirs = os.listdir("models")
|
| 223 |
+
if model_name in model_dirs:
|
| 224 |
+
model_path = f"models/{model_name}"
|
| 225 |
+
if model_path is not None:
|
| 226 |
+
model_source = model_path
|
| 227 |
+
else:
|
| 228 |
+
model_source = f"THUDM/{model_name}"
|
| 229 |
+
CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
model_source, trust_remote_code=True
|
| 231 |
+
)
|
| 232 |
+
quantified = False
|
| 233 |
+
if "int4" in model_name:
|
| 234 |
+
quantified = True
|
| 235 |
+
if quantified:
|
| 236 |
+
model = AutoModel.from_pretrained(
|
| 237 |
+
model_source, trust_remote_code=True
|
| 238 |
+
).half()
|
| 239 |
+
else:
|
| 240 |
+
model = AutoModel.from_pretrained(
|
| 241 |
+
model_source, trust_remote_code=True
|
| 242 |
+
).half()
|
| 243 |
+
if torch.cuda.is_available():
|
| 244 |
+
# run on CUDA
|
| 245 |
+
logging.info("CUDA is available, using CUDA")
|
| 246 |
+
model = model.cuda()
|
| 247 |
+
# mps加速还存在一些问题,暂时不使用
|
| 248 |
+
elif system_name == "Darwin" and model_path is not None and not quantified:
|
| 249 |
+
logging.info("Running on macOS, using MPS")
|
| 250 |
+
# running on macOS and model already downloaded
|
| 251 |
+
model = model.to("mps")
|
| 252 |
+
else:
|
| 253 |
+
logging.info("GPU is not available, using CPU")
|
| 254 |
+
model = model.eval()
|
| 255 |
+
CHATGLM_MODEL = model
|
| 256 |
|
| 257 |
def _get_glm_style_input(self):
|
| 258 |
history = [x["content"] for x in self.history]
|
|
|
|
| 266 |
|
| 267 |
def get_answer_at_once(self):
|
| 268 |
history, query = self._get_glm_style_input()
|
| 269 |
+
response, _ = CHATGLM_MODEL.chat(CHATGLM_TOKENIZER, query, history=history)
|
| 270 |
return response, len(response)
|
| 271 |
|
| 272 |
def get_answer_stream_iter(self):
|
| 273 |
history, query = self._get_glm_style_input()
|
| 274 |
+
for response, history in CHATGLM_MODEL.stream_chat(
|
| 275 |
+
CHATGLM_TOKENIZER,
|
| 276 |
query,
|
| 277 |
history,
|
| 278 |
max_length=self.token_upper_limit,
|
|
|
|
| 293 |
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
| 294 |
from lmflow.models.auto_model import AutoModel
|
| 295 |
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
|
| 296 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
self.max_generation_token = 1000
|
| 298 |
+
self.end_string = "\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
# We don't need input data
|
| 300 |
data_args = DatasetArguments(dataset_path=None)
|
| 301 |
self.dataset = Dataset(data_args)
|
| 302 |
|
| 303 |
+
global LLAMA_MODEL, LLAMA_INFERENCER
|
| 304 |
+
if LLAMA_MODEL is None or LLAMA_INFERENCER is None:
|
| 305 |
+
model_path = None
|
| 306 |
+
if os.path.exists("models"):
|
| 307 |
+
model_dirs = os.listdir("models")
|
| 308 |
+
if model_name in model_dirs:
|
| 309 |
+
model_path = f"models/{model_name}"
|
| 310 |
+
if model_path is not None:
|
| 311 |
+
model_source = model_path
|
| 312 |
+
else:
|
| 313 |
+
model_source = f"decapoda-research/{model_name}"
|
| 314 |
+
# raise Exception(f"models目录下没有这个模型: {model_name}")
|
| 315 |
+
if lora_path is not None:
|
| 316 |
+
lora_path = f"lora/{lora_path}"
|
| 317 |
+
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
| 318 |
+
pipeline_args = InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
| 319 |
+
|
| 320 |
+
with open(pipeline_args.deepspeed, "r") as f:
|
| 321 |
+
ds_config = json.load(f)
|
| 322 |
+
LLAMA_MODEL = AutoModel.get_model(
|
| 323 |
+
model_args,
|
| 324 |
+
tune_strategy="none",
|
| 325 |
+
ds_config=ds_config,
|
| 326 |
+
)
|
| 327 |
+
LLAMA_INFERENCER = AutoPipeline.get_pipeline(
|
| 328 |
+
pipeline_name="inferencer",
|
| 329 |
+
model_args=model_args,
|
| 330 |
+
data_args=data_args,
|
| 331 |
+
pipeline_args=pipeline_args,
|
| 332 |
+
)
|
| 333 |
# Chats
|
| 334 |
+
# model_name = model_args.model_name_or_path
|
| 335 |
+
# if model_args.lora_model_path is not None:
|
| 336 |
+
# model_name += f" + {model_args.lora_model_path}"
|
| 337 |
|
| 338 |
# context = (
|
| 339 |
# "You are a helpful assistant who follows the given instructions"
|
| 340 |
# " unconditionally."
|
| 341 |
# )
|
| 342 |
+
|
| 343 |
|
| 344 |
def _get_llama_style_input(self):
|
| 345 |
history = []
|
|
|
|
| 359 |
{"type": "text_only", "instances": [{"text": context}]}
|
| 360 |
)
|
| 361 |
|
| 362 |
+
output_dataset = LLAMA_INFERENCER.inference(
|
| 363 |
+
model=LLAMA_MODEL,
|
| 364 |
dataset=input_dataset,
|
| 365 |
max_new_tokens=self.max_generation_token,
|
| 366 |
temperature=self.temperature,
|
|
|
|
| 377 |
input_dataset = self.dataset.from_dict(
|
| 378 |
{"type": "text_only", "instances": [{"text": context+partial_text}]}
|
| 379 |
)
|
| 380 |
+
output_dataset = LLAMA_INFERENCER.inference(
|
| 381 |
+
model=LLAMA_MODEL,
|
| 382 |
dataset=input_dataset,
|
| 383 |
max_new_tokens=step,
|
| 384 |
temperature=self.temperature,
|
|
|
|
| 390 |
yield partial_text
|
| 391 |
|
| 392 |
|
| 393 |
+
def get_model(
|
| 394 |
+
model_name,
|
| 395 |
+
lora_model_path=None,
|
| 396 |
+
access_key=None,
|
| 397 |
+
temperature=None,
|
| 398 |
+
top_p=None,
|
| 399 |
+
system_prompt=None,
|
| 400 |
+
) -> BaseLLMModel:
|
| 401 |
+
msg = f"模型设置为了: {model_name}"
|
| 402 |
+
model_type = ModelType.get_type(model_name)
|
| 403 |
+
lora_selector_visibility = False
|
| 404 |
+
lora_choices = []
|
| 405 |
+
dont_change_lora_selector = False
|
| 406 |
+
if model_type != ModelType.OpenAI:
|
| 407 |
+
config.local_embedding = True
|
| 408 |
+
# del current_model.model
|
| 409 |
+
model = None
|
| 410 |
+
try:
|
| 411 |
+
if model_type == ModelType.OpenAI:
|
| 412 |
+
logging.info(f"正在加载OpenAI模型: {model_name}")
|
| 413 |
+
model = OpenAIClient(
|
| 414 |
+
model_name=model_name,
|
| 415 |
+
api_key=access_key,
|
| 416 |
+
system_prompt=system_prompt,
|
| 417 |
+
temperature=temperature,
|
| 418 |
+
top_p=top_p,
|
| 419 |
+
)
|
| 420 |
+
elif model_type == ModelType.ChatGLM:
|
| 421 |
+
logging.info(f"正在加载ChatGLM模型: {model_name}")
|
| 422 |
+
model = ChatGLM_Client(model_name)
|
| 423 |
+
elif model_type == ModelType.LLaMA and lora_model_path == "":
|
| 424 |
+
msg = f"现在请为 {model_name} 选择LoRA模型"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
logging.info(msg)
|
| 426 |
+
lora_selector_visibility = True
|
| 427 |
+
if os.path.isdir("lora"):
|
| 428 |
+
lora_choices = get_file_names("lora", plain=True, filetypes=[""])
|
| 429 |
+
lora_choices = ["No LoRA"] + lora_choices
|
| 430 |
+
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
| 431 |
+
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
| 432 |
+
dont_change_lora_selector = True
|
| 433 |
+
if lora_model_path == "No LoRA":
|
| 434 |
+
lora_model_path = None
|
| 435 |
+
msg += " + No LoRA"
|
| 436 |
+
else:
|
| 437 |
+
msg += f" + {lora_model_path}"
|
| 438 |
+
model = LLaMA_Client(model_name, lora_model_path)
|
| 439 |
+
elif model_type == ModelType.Unknown:
|
| 440 |
+
raise ValueError(f"未知模型: {model_name}")
|
| 441 |
+
logging.info(msg)
|
| 442 |
+
except Exception as e:
|
| 443 |
+
logging.error(e)
|
| 444 |
+
msg = f"{STANDARD_ERROR_MSG}: {e}"
|
| 445 |
+
if dont_change_lora_selector:
|
| 446 |
+
return model, msg
|
| 447 |
+
else:
|
| 448 |
+
return model, msg, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
|
| 451 |
if __name__ == "__main__":
|
|
|
|
| 454 |
# set logging level to debug
|
| 455 |
logging.basicConfig(level=logging.DEBUG)
|
| 456 |
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
|
| 457 |
+
client = get_model(model_name="chatglm-6b-int4")
|
| 458 |
chatbot = []
|
| 459 |
stream = False
|
| 460 |
# 测试账单功能
|
modules/presets.py
CHANGED
|
@@ -4,6 +4,11 @@ from pathlib import Path
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# ChatGPT 设置
|
| 8 |
INITIAL_SYSTEM_PROMPT = "You are a helpful assistant."
|
| 9 |
API_HOST = "api.openai.com"
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
CHATGLM_MODEL = None
|
| 8 |
+
CHATGLM_TOKENIZER = None
|
| 9 |
+
LLAMA_MODEL = None
|
| 10 |
+
LLAMA_INFERENCER = None
|
| 11 |
+
|
| 12 |
# ChatGPT 设置
|
| 13 |
INITIAL_SYSTEM_PROMPT = "You are a helpful assistant."
|
| 14 |
API_HOST = "api.openai.com"
|
modules/utils.py
CHANGED
|
@@ -33,6 +33,82 @@ if TYPE_CHECKING:
|
|
| 33 |
class DataframeData(TypedDict):
|
| 34 |
headers: List[str]
|
| 35 |
data: List[List[str | int | bool]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def count_token(message):
|
|
|
|
| 33 |
class DataframeData(TypedDict):
|
| 34 |
headers: List[str]
|
| 35 |
data: List[List[str | int | bool]]
|
| 36 |
+
|
| 37 |
+
def predict(current_model, *args):
|
| 38 |
+
iter = current_model.predict(*args)
|
| 39 |
+
for i in iter:
|
| 40 |
+
yield i
|
| 41 |
+
|
| 42 |
+
def billing_info(current_model):
|
| 43 |
+
return current_model.billing_info()
|
| 44 |
+
|
| 45 |
+
def set_key(current_model, *args):
|
| 46 |
+
return current_model.set_key(*args)
|
| 47 |
+
|
| 48 |
+
def load_chat_history(current_model, *args):
|
| 49 |
+
return current_model.load_chat_history(*args)
|
| 50 |
+
|
| 51 |
+
def interrupt(current_model, *args):
|
| 52 |
+
return current_model.interrupt(*args)
|
| 53 |
+
|
| 54 |
+
def reset(current_model, *args):
|
| 55 |
+
return current_model.reset(*args)
|
| 56 |
+
|
| 57 |
+
def retry(current_model, *args):
|
| 58 |
+
iter = current_model.retry(*args)
|
| 59 |
+
for i in iter:
|
| 60 |
+
yield i
|
| 61 |
+
|
| 62 |
+
def delete_first_conversation(current_model, *args):
|
| 63 |
+
return current_model.delete_first_conversation(*args)
|
| 64 |
+
|
| 65 |
+
def delete_last_conversation(current_model, *args):
|
| 66 |
+
return current_model.delete_last_conversation(*args)
|
| 67 |
+
|
| 68 |
+
def set_system_prompt(current_model, *args):
|
| 69 |
+
return current_model.set_system_prompt(*args)
|
| 70 |
+
|
| 71 |
+
def save_chat_history(current_model, *args):
|
| 72 |
+
return current_model.save_chat_history(*args)
|
| 73 |
+
|
| 74 |
+
def export_markdown(current_model, *args):
|
| 75 |
+
return current_model.export_markdown(*args)
|
| 76 |
+
|
| 77 |
+
def load_chat_history(current_model, *args):
|
| 78 |
+
return current_model.load_chat_history(*args)
|
| 79 |
+
|
| 80 |
+
def set_token_upper_limit(current_model, *args):
|
| 81 |
+
return current_model.set_token_upper_limit(*args)
|
| 82 |
+
|
| 83 |
+
def set_temperature(current_model, *args):
|
| 84 |
+
current_model.set_temperature(*args)
|
| 85 |
+
|
| 86 |
+
def set_top_p(current_model, *args):
|
| 87 |
+
current_model.set_top_p(*args)
|
| 88 |
+
|
| 89 |
+
def set_n_choices(current_model, *args):
|
| 90 |
+
current_model.set_n_choices(*args)
|
| 91 |
+
|
| 92 |
+
def set_stop_sequence(current_model, *args):
|
| 93 |
+
current_model.set_stop_sequence(*args)
|
| 94 |
+
|
| 95 |
+
def set_max_tokens(current_model, *args):
|
| 96 |
+
current_model.set_max_tokens(*args)
|
| 97 |
+
|
| 98 |
+
def set_presence_penalty(current_model, *args):
|
| 99 |
+
current_model.set_presence_penalty(*args)
|
| 100 |
+
|
| 101 |
+
def set_frequency_penalty(current_model, *args):
|
| 102 |
+
current_model.set_frequency_penalty(*args)
|
| 103 |
+
|
| 104 |
+
def set_logit_bias(current_model, *args):
|
| 105 |
+
current_model.set_logit_bias(*args)
|
| 106 |
+
|
| 107 |
+
def set_user_identifier(current_model, *args):
|
| 108 |
+
current_model.set_user_identifier(*args)
|
| 109 |
+
|
| 110 |
+
def set_single_turn(current_model, *args):
|
| 111 |
+
current_model.set_single_turn(*args)
|
| 112 |
|
| 113 |
|
| 114 |
def count_token(message):
|