Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| import base64 | |
| from PIL import Image, ImageDraw | |
| from io import BytesIO | |
| import re | |
| models = { | |
| "Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"), | |
| "Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto") | |
| } | |
| processors = { | |
| "Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct"), | |
| "Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
| } | |
| def image_to_base64(image): | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| return img_str | |
| def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): | |
| draw = ImageDraw.Draw(image) | |
| for box in bounding_boxes: | |
| xmin, ymin, xmax, ymax = box | |
| draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) | |
| return image | |
| def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): | |
| x_scale = original_width / scaled_width | |
| y_scale = original_height / scaled_height | |
| rescaled_boxes = [] | |
| for box in bounding_boxes: | |
| xmin, ymin, xmax, ymax = box | |
| rescaled_box = [ | |
| xmin * x_scale, | |
| ymin * y_scale, | |
| xmax * x_scale, | |
| ymax * y_scale | |
| ] | |
| rescaled_boxes.append(rescaled_box) | |
| return rescaled_boxes | |
| def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-7B-Instruct"): | |
| model = models[model_id].eval() | |
| processor = processors[model_id] | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"}, | |
| {"type": "text", "text": system_prompt}, | |
| {"type": "text", "text": text_input}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| generated_ids = model.generate(**inputs, max_new_tokens=256) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| print(output_text) | |
| pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]' | |
| matches = re.findall(pattern, str(output_text)) | |
| parsed_boxes = [[int(num) for num in match] for match in matches] | |
| scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height) | |
| return output_text, parsed_boxes, draw_bounding_boxes(image, scaled_boxes) | |
| css = """ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| default_system_prompt = "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]." | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown( | |
| """ | |
| # Qwen2-VL Object Detection Demo | |
| Use the Qwen2-VL models to detect objects in an image. The 7B variant seems to work much better. | |
| **Usage**: Use the keyword "detect" and a description of the target (see examples below). | |
| """) | |
| with gr.Tab(label="Qwen2-VL Input"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Image", type="pil") | |
| model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct") | |
| system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt) | |
| text_input = gr.Textbox(label="User Prompt") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| model_output_text = gr.Textbox(label="Model Output Text") | |
| parsed_boxes = gr.Textbox(label="Parsed Boxes") | |
| annotated_image = gr.Image(label="Annotated Image") | |
| gr.Examples( | |
| examples=[ | |
| ["assets/image1.jpg", "detect goats", default_system_prompt], | |
| ["assets/image2.jpg", "detect blue button", default_system_prompt], | |
| ["assets/image3.jpg", "detect person on bike", default_system_prompt], | |
| ], | |
| inputs=[input_img, text_input, system_prompt], | |
| outputs=[model_output_text, parsed_boxes, annotated_image], | |
| fn=run_example, | |
| cache_examples=True, | |
| label="Try examples" | |
| ) | |
| submit_btn.click(run_example, [input_img, text_input, system_prompt, model_selector], [model_output_text, parsed_boxes, annotated_image]) | |
| demo.launch(debug=True) |