Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import torch
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from torch.utils.data import Dataset
|
| 8 |
+
from transformers import (
|
| 9 |
+
T5ForConditionalGeneration,
|
| 10 |
+
T5TokenizerFast,
|
| 11 |
+
DataCollatorForSeq2Seq,
|
| 12 |
+
Trainer,
|
| 13 |
+
TrainingArguments,
|
| 14 |
+
pipeline
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
DATA_PATH = "data/train.csv"
|
| 18 |
+
DEFAULT_INPUT_COL = "text"
|
| 19 |
+
DEFAULT_TARGET_COL = "label"
|
| 20 |
+
|
| 21 |
+
class CSVDataset(Dataset):
|
| 22 |
+
def __init__(self, df, tokenizer, input_col, target_col, max_input_len=512, max_target_len=128, prefix="summarize: "):
|
| 23 |
+
self.inputs = df[input_col].astype(str).tolist()
|
| 24 |
+
self.targets = df[target_col].astype(str).tolist()
|
| 25 |
+
self.tokenizer = tokenizer
|
| 26 |
+
self.max_input_len = max_input_len
|
| 27 |
+
self.max_target_len = max_target_len
|
| 28 |
+
self.prefix = prefix
|
| 29 |
+
|
| 30 |
+
def __len__(self):
|
| 31 |
+
return len(self.inputs)
|
| 32 |
+
|
| 33 |
+
def __getitem__(self, idx):
|
| 34 |
+
src = self.prefix + self.inputs[idx]
|
| 35 |
+
tgt = self.targets[idx]
|
| 36 |
+
model_inputs = self.tokenizer(
|
| 37 |
+
src, max_length=self.max_input_len, truncation=True, padding=False, return_tensors=None
|
| 38 |
+
)
|
| 39 |
+
with self.tokenizer.as_target_tokenizer():
|
| 40 |
+
labels = self.tokenizer(
|
| 41 |
+
tgt, max_length=self.max_target_len, truncation=True, padding=False, return_tensors=None
|
| 42 |
+
)
|
| 43 |
+
model_inputs["labels"] = labels["input_ids"]
|
| 44 |
+
return model_inputs
|
| 45 |
+
|
| 46 |
+
def run_training(base_model, epochs, batch_size, lr, warmup_steps, weight_decay, max_input_len, max_target_len, input_col, target_col, eval_ratio, grad_accum, fp16):
|
| 47 |
+
log_lines = []
|
| 48 |
+
def log(msg):
|
| 49 |
+
log_lines.append(msg)
|
| 50 |
+
|
| 51 |
+
if not os.path.exists(DATA_PATH):
|
| 52 |
+
return "data/train.csv not found.", ""
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
df = pd.read_csv(DATA_PATH)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Failed reading CSV: {e}", ""
|
| 58 |
+
|
| 59 |
+
for c in [input_col, target_col]:
|
| 60 |
+
if c not in df.columns:
|
| 61 |
+
return f"Column '{c}' not in CSV. Found: {list(df.columns)}", ""
|
| 62 |
+
|
| 63 |
+
log("Loading tokenizer & model...")
|
| 64 |
+
tok = T5TokenizerFast.from_pretrained(base_model)
|
| 65 |
+
mdl = T5ForConditionalGeneration.from_pretrained(base_model)
|
| 66 |
+
|
| 67 |
+
train_df, val_df = train_test_split(df, test_size=float(eval_ratio), random_state=42)
|
| 68 |
+
train_ds = CSVDataset(train_df, tok, input_col, target_col, max_input_len, max_target_len)
|
| 69 |
+
val_ds = CSVDataset(val_df, tok, input_col, target_col, max_input_len, max_target_len)
|
| 70 |
+
|
| 71 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tok, model=mdl)
|
| 72 |
+
output_dir = "checkpoint"
|
| 73 |
+
|
| 74 |
+
training_args = TrainingArguments(
|
| 75 |
+
output_dir=output_dir,
|
| 76 |
+
num_train_epochs=int(epochs),
|
| 77 |
+
per_device_train_batch_size=int(batch_size),
|
| 78 |
+
per_device_eval_batch_size=int(batch_size),
|
| 79 |
+
learning_rate=float(lr),
|
| 80 |
+
weight_decay=float(weight_decay),
|
| 81 |
+
warmup_steps=int(warmup_steps),
|
| 82 |
+
predict_with_generate=True,
|
| 83 |
+
evaluation_strategy="epoch",
|
| 84 |
+
save_strategy="epoch",
|
| 85 |
+
logging_steps=10,
|
| 86 |
+
load_best_model_at_end=True,
|
| 87 |
+
metric_for_best_model="eval_loss",
|
| 88 |
+
gradient_accumulation_steps=int(grad_accum),
|
| 89 |
+
fp16=bool(fp16),
|
| 90 |
+
report_to=[],
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
trainer = Trainer(
|
| 94 |
+
model=mdl,
|
| 95 |
+
args=training_args,
|
| 96 |
+
train_dataset=train_ds,
|
| 97 |
+
eval_dataset=val_ds,
|
| 98 |
+
tokenizer=tok,
|
| 99 |
+
data_collator=data_collator
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
log("Starting training...")
|
| 103 |
+
trainer.train()
|
| 104 |
+
|
| 105 |
+
log("Saving model...")
|
| 106 |
+
trainer.save_model(output_dir)
|
| 107 |
+
tok.save_pretrained(output_dir)
|
| 108 |
+
|
| 109 |
+
return "\n".join(log_lines), "Training complete. Model saved to ./checkpoint"
|
| 110 |
+
|
| 111 |
+
def make_pipe_from_checkpoint():
|
| 112 |
+
if not os.path.exists("checkpoint"):
|
| 113 |
+
raise RuntimeError("No checkpoint found. Train first.")
|
| 114 |
+
return pipeline("text2text-generation", model="checkpoint")
|
| 115 |
+
|
| 116 |
+
with gr.Blocks() as demo:
|
| 117 |
+
gr.Markdown("# 🔧 Train & Share: Summarizer (FLAN‑T5)")
|
| 118 |
+
with gr.Tab("Train"):
|
| 119 |
+
gr.Markdown("Use defaults and click **Start Training**. This runs inside the Space.")
|
| 120 |
+
base_model = gr.Dropdown(choices=["google/flan-t5-small","google/flan-t5-base"], value="google/flan-t5-small", label="Base model")
|
| 121 |
+
epochs = gr.Slider(1, 6, value=2, step=1, label="Epochs")
|
| 122 |
+
batch_size = gr.Slider(2, 16, value=8, step=1, label="Batch size")
|
| 123 |
+
lr = gr.Textbox(value="5e-5", label="Learning rate")
|
| 124 |
+
warmup = gr.Textbox(value="100", label="Warmup steps")
|
| 125 |
+
wd = gr.Textbox(value="0.01", label="Weight decay")
|
| 126 |
+
max_in = gr.Slider(128, 1024, value=512, step=32, label="Max input length")
|
| 127 |
+
max_out = gr.Slider(32, 256, value=128, step=8, label="Max target length")
|
| 128 |
+
in_col = gr.Textbox(value=DEFAULT_INPUT_COL, label="Input column")
|
| 129 |
+
out_col = gr.Textbox(value=DEFAULT_TARGET_COL, label="Target column")
|
| 130 |
+
eval_ratio = gr.Textbox(value="0.1", label="Eval ratio (0-1)")
|
| 131 |
+
grad_accum = gr.Slider(1, 8, value=1, step=1, label="Gradient accumulation")
|
| 132 |
+
use_fp16 = gr.Checkbox(value=True, label="Use fp16 (GPU only)")
|
| 133 |
+
train_btn = gr.Button("🚀 Start Training")
|
| 134 |
+
train_log = gr.Textbox(label="Training log", lines=10)
|
| 135 |
+
train_status = gr.Textbox(label="Status")
|
| 136 |
+
|
| 137 |
+
def train_click(bm, e, bs, lrn, wu, wdec, mi, mo, ic, oc, er, ga, fp):
|
| 138 |
+
log, status = run_training(bm, e, bs, lrn, wu, wdec, mi, mo, ic, oc, er, ga, fp)
|
| 139 |
+
return log, status
|
| 140 |
+
|
| 141 |
+
train_btn.click(train_click, [base_model, epochs, batch_size, lr, warmup, wd, max_in, max_out, in_col, out_col, eval_ratio, grad_accum, use_fp16], [train_log, train_status])
|
| 142 |
+
|
| 143 |
+
with gr.Tab("Demo"):
|
| 144 |
+
gr.Markdown("After training, this tab uses the local **checkpoint**.")
|
| 145 |
+
inp = gr.Textbox(label="Input Text", lines=10, placeholder="Paste text here...")
|
| 146 |
+
max_new_tokens = gr.Slider(16, 256, value=128, step=8, label="Max new tokens")
|
| 147 |
+
temperature = gr.Slider(0, 1.0, value=0.0, step=0.1, label="Temperature")
|
| 148 |
+
topp = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
| 149 |
+
btn = gr.Button("Summarize")
|
| 150 |
+
out = gr.Textbox(label="Summary", lines=10)
|
| 151 |
+
|
| 152 |
+
pipe_holder = {"pipe": None}
|
| 153 |
+
|
| 154 |
+
def summarize_click(text, max_new_tokens, temperature, top_p):
|
| 155 |
+
if pipe_holder["pipe"] is None:
|
| 156 |
+
pipe_holder["pipe"] = make_pipe_from_checkpoint()
|
| 157 |
+
gen = pipe_holder["pipe"](
|
| 158 |
+
f"summarize: {text}",
|
| 159 |
+
max_new_tokens=int(max_new_tokens),
|
| 160 |
+
do_sample=float(temperature)>0,
|
| 161 |
+
temperature=float(temperature),
|
| 162 |
+
top_p=float(top_p)
|
| 163 |
+
)
|
| 164 |
+
return gen[0]["generated_text"]
|
| 165 |
+
|
| 166 |
+
btn.click(summarize_click, [inp, max_new_tokens, temperature, topp], [out])
|
| 167 |
+
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
demo.launch()
|