Spaces:
Running
Running
Add NVLM
Browse files- pages/28_NVEagle.py +2 -2
- pages/29_NVLM.py +167 -0
- pages/NVLM/image_1.png +0 -0
- pages/NVLM/image_2.png +0 -0
- pages/NVLM/image_3.png +0 -0
- pages/NVLM/image_4.png +0 -0
pages/28_NVEagle.py
CHANGED
|
@@ -159,7 +159,7 @@ with col2:
|
|
| 159 |
with col3:
|
| 160 |
if lang == "en":
|
| 161 |
if st.button("Next paper", use_container_width=True):
|
| 162 |
-
switch_page("
|
| 163 |
else:
|
| 164 |
if st.button("Papier suivant", use_container_width=True):
|
| 165 |
-
switch_page("
|
|
|
|
| 159 |
with col3:
|
| 160 |
if lang == "en":
|
| 161 |
if st.button("Next paper", use_container_width=True):
|
| 162 |
+
switch_page("NVLM")
|
| 163 |
else:
|
| 164 |
if st.button("Papier suivant", use_container_width=True):
|
| 165 |
+
switch_page("NVLM")
|
pages/29_NVLM.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_extras.switch_page_button import switch_page
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
translations = {
|
| 6 |
+
'en': {'title': 'NVLM',
|
| 7 |
+
'original_tweet':
|
| 8 |
+
"""
|
| 9 |
+
[Original tweet](https://x.com/mervenoyann/status/1841098941900767323) (October 1st, 2024)
|
| 10 |
+
""",
|
| 11 |
+
'tweet_1':
|
| 12 |
+
"""
|
| 13 |
+
NVIDIA just dropped a gigantic multimodal model called NVLM 72B 🦖
|
| 14 |
+
Explaining everything from what I got of reading the paper here 📝
|
| 15 |
+
""",
|
| 16 |
+
'tweet_2':
|
| 17 |
+
"""
|
| 18 |
+
The paper contains many ablation studies on various ways to use the LLM backbone 👇🏻
|
| 19 |
+
|
| 20 |
+
🦩 Flamingo-like cross-attention (NVLM-X)
|
| 21 |
+
🌋 Llava-like concatenation of image and text embeddings to a decoder-only model (NVLM-D)
|
| 22 |
+
✨ a hybrid architecture (NVLM-H)
|
| 23 |
+
""",
|
| 24 |
+
'tweet_3':
|
| 25 |
+
"""
|
| 26 |
+
Checking evaluations, NVLM-D and NVLM-H are best or second best compared to other models 👏
|
| 27 |
+
|
| 28 |
+
The released model is NVLM-D based on Qwen-2 Instruct, aligned with InternViT-6B using a huge mixture of different datasets
|
| 29 |
+
""",
|
| 30 |
+
'tweet_4':
|
| 31 |
+
"""
|
| 32 |
+
You can easily use this model by loading it through 🤗 Transformers' AutoModel 😍
|
| 33 |
+
""",
|
| 34 |
+
'ressources':
|
| 35 |
+
"""
|
| 36 |
+
Ressources:
|
| 37 |
+
[NVLM: Open Frontier-Class Multimodal LLMs](https://arxiv.org/abs/2409.11402)
|
| 38 |
+
by Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki, Mohammad Shoeybi, Bryan Catanzaro, Wei Ping (2024)
|
| 39 |
+
[GitHub](https://nvlm-project.github.io/)
|
| 40 |
+
[Model](https://huggingface.co/nvidia/NVLM-D-72B)
|
| 41 |
+
"""
|
| 42 |
+
},
|
| 43 |
+
'fr': {
|
| 44 |
+
'title': 'NVLM',
|
| 45 |
+
'original_tweet':
|
| 46 |
+
"""
|
| 47 |
+
[Tweet de base](https://x.com/mervenoyann/status/1841098941900767323) (en anglais) (1er ocotbre 2024)
|
| 48 |
+
""",
|
| 49 |
+
'tweet_1':
|
| 50 |
+
"""
|
| 51 |
+
NVIDIA vient de publier un gigantesque modèle multimodal appelé NVLM 72B 🦖
|
| 52 |
+
J'explique tout ce que j'ai compris suite à la lecture du papier 📝
|
| 53 |
+
""",
|
| 54 |
+
'tweet_2':
|
| 55 |
+
"""
|
| 56 |
+
L'article contient de nombreuses études d'ablation sur les différentes façons d'utiliser le backbone 👇🏻
|
| 57 |
+
|
| 58 |
+
🦩 Attention croisée de type Flamingo (NVLM-X)
|
| 59 |
+
🌋 concaténation de type Llava d'embeddings d'images et de textes à un décodeur (NVLM-D)
|
| 60 |
+
✨ une architecture hybride (NVLM-H)
|
| 61 |
+
""",
|
| 62 |
+
'tweet_3':
|
| 63 |
+
"""
|
| 64 |
+
En vérifiant les évaluations, NVLM-D et NVLM-H sont les meilleurs ou les deuxièmes par rapport aux autres modèles 👏
|
| 65 |
+
|
| 66 |
+
Le modèle publié est NVLM-D basé sur Qwen-2 Instruct, aligné avec InternViT-6B en utilisant un énorme mélange de différents jeux de données.
|
| 67 |
+
""",
|
| 68 |
+
'tweet_4':
|
| 69 |
+
"""
|
| 70 |
+
Vous pouvez facilement utiliser ce modèle en le chargeant via AutoModel de 🤗 Transformers 😍
|
| 71 |
+
""",
|
| 72 |
+
'ressources':
|
| 73 |
+
"""
|
| 74 |
+
Ressources :
|
| 75 |
+
[NVLM: Open Frontier-Class Multimodal LLMs](https://arxiv.org/abs/2409.11402)
|
| 76 |
+
de Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki, Mohammad Shoeybi, Bryan Catanzaro, Wei Ping (2024)
|
| 77 |
+
[GitHub](https://nvlm-project.github.io/)
|
| 78 |
+
[Modèle](https://huggingface.co/nvidia/NVLM-D-72B)
|
| 79 |
+
"""
|
| 80 |
+
}
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def language_selector():
|
| 85 |
+
languages = {'EN': '🇬🇧', 'FR': '🇫🇷'}
|
| 86 |
+
selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector')
|
| 87 |
+
return 'en' if selected_lang == 'EN' else 'fr'
|
| 88 |
+
|
| 89 |
+
left_column, right_column = st.columns([5, 1])
|
| 90 |
+
|
| 91 |
+
# Add a selector to the right column
|
| 92 |
+
with right_column:
|
| 93 |
+
lang = language_selector()
|
| 94 |
+
|
| 95 |
+
# Add a title to the left column
|
| 96 |
+
with left_column:
|
| 97 |
+
st.title(translations[lang]["title"])
|
| 98 |
+
|
| 99 |
+
st.success(translations[lang]["original_tweet"], icon="ℹ️")
|
| 100 |
+
st.markdown(""" """)
|
| 101 |
+
|
| 102 |
+
st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True)
|
| 103 |
+
st.markdown(""" """)
|
| 104 |
+
|
| 105 |
+
st.image("pages/NVLM/image_1.png", use_column_width=True)
|
| 106 |
+
st.markdown(""" """)
|
| 107 |
+
|
| 108 |
+
st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True)
|
| 109 |
+
st.markdown(""" """)
|
| 110 |
+
|
| 111 |
+
st.image("pages/NVLM/image_2.png", use_column_width=True)
|
| 112 |
+
st.markdown(""" """)
|
| 113 |
+
|
| 114 |
+
st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True)
|
| 115 |
+
st.markdown(""" """)
|
| 116 |
+
|
| 117 |
+
st.image("pages/NVLM/image_3.png", use_column_width=True)
|
| 118 |
+
st.markdown(""" """)
|
| 119 |
+
|
| 120 |
+
st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True)
|
| 121 |
+
st.markdown(""" """)
|
| 122 |
+
|
| 123 |
+
st.image("pages/NVLM/image_4.png", use_column_width=True)
|
| 124 |
+
st.markdown(""" """)
|
| 125 |
+
|
| 126 |
+
with st.expander ("Code"):
|
| 127 |
+
st.code("""
|
| 128 |
+
import torch
|
| 129 |
+
from transformers import AutoModel
|
| 130 |
+
|
| 131 |
+
path = "nvidia/NVLM-D-72B"
|
| 132 |
+
|
| 133 |
+
model = AutoModel.from_pretrained(
|
| 134 |
+
path,
|
| 135 |
+
torch_dtype=torch.bfloat16,
|
| 136 |
+
low_cpu_mem_usage=True,
|
| 137 |
+
use_flash_attn=False,
|
| 138 |
+
trust_remote_code=True).eval()
|
| 139 |
+
""")
|
| 140 |
+
|
| 141 |
+
st.info(translations[lang]["ressources"], icon="📚")
|
| 142 |
+
|
| 143 |
+
st.markdown(""" """)
|
| 144 |
+
st.markdown(""" """)
|
| 145 |
+
st.markdown(""" """)
|
| 146 |
+
col1, col2, col3= st.columns(3)
|
| 147 |
+
with col1:
|
| 148 |
+
if lang == "en":
|
| 149 |
+
if st.button('Previous paper', use_container_width=True):
|
| 150 |
+
switch_page("NVEagle")
|
| 151 |
+
else:
|
| 152 |
+
if st.button('Papier précédent', use_container_width=True):
|
| 153 |
+
switch_page("NVEagle")
|
| 154 |
+
with col2:
|
| 155 |
+
if lang == "en":
|
| 156 |
+
if st.button("Home", use_container_width=True):
|
| 157 |
+
switch_page("Home")
|
| 158 |
+
else:
|
| 159 |
+
if st.button("Accueil", use_container_width=True):
|
| 160 |
+
switch_page("Home")
|
| 161 |
+
with col3:
|
| 162 |
+
if lang == "en":
|
| 163 |
+
if st.button("Next paper", use_container_width=True):
|
| 164 |
+
switch_page("Home")
|
| 165 |
+
else:
|
| 166 |
+
if st.button("Papier suivant", use_container_width=True):
|
| 167 |
+
switch_page("Home")
|
pages/NVLM/image_1.png
ADDED
|
pages/NVLM/image_2.png
ADDED
|
pages/NVLM/image_3.png
ADDED
|
pages/NVLM/image_4.png
ADDED
|