update
Browse files- app.py +446 -0
- ckpts/model.pt +3 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-311.pyc +0 -0
- src/data_loader/__init__.py +0 -0
- src/data_loader/__pycache__/__init__.cpython-311.pyc +0 -0
- src/data_loader/__pycache__/download_data.cpython-311.pyc +0 -0
- src/data_loader/__pycache__/download_images.cpython-311.pyc +0 -0
- src/data_loader/download_data.py +76 -0
- src/data_loader/download_data_mocheg.py +71 -0
- src/data_loader/download_images.py +168 -0
- src/data_loader/preprocess_embeddings.py +129 -0
- src/demo/__init__.py +0 -0
- src/demo/__pycache__/__init__.cpython-311.pyc +0 -0
- src/demo/__pycache__/app.cpython-311.pyc +0 -0
- src/demo/app.py +446 -0
- src/evidence/__init__.py +0 -0
- src/evidence/__pycache__/__init__.cpython-311.pyc +0 -0
- src/evidence/__pycache__/corpus_utils.cpython-311.pyc +0 -0
- src/evidence/__pycache__/im2im_retrieval.cpython-311.pyc +0 -0
- src/evidence/__pycache__/text2text_retrieval.cpython-311.pyc +0 -0
- src/evidence/corpus_utils.py +100 -0
- src/evidence/im2im_retrieval.py +169 -0
- src/evidence/text2text_retrieval.py +203 -0
- src/experimental/__init__.py +0 -0
- src/experimental/dataset_search.ipynb +0 -0
- src/experimental/dataset_stats.ipynb +0 -0
- src/experimental/image_captioning.ipynb +96 -0
- src/model/__init__.py +0 -0
- src/model/__pycache__/__init__.cpython-311.pyc +0 -0
- src/model/__pycache__/layers.cpython-311.pyc +0 -0
- src/model/__pycache__/model.cpython-311.pyc +0 -0
- src/model/dataset.py +164 -0
- src/model/layers.py +58 -0
- src/model/model.py +432 -0
- src/preprocess/__init__.py +0 -0
- src/preprocess/__pycache__/__init__.cpython-311.pyc +0 -0
- src/preprocess/__pycache__/caption.cpython-311.pyc +0 -0
- src/preprocess/__pycache__/preprocess.cpython-311.pyc +0 -0
- src/preprocess/caption.py +129 -0
- src/preprocess/preprocess.py +82 -0
- src/utils/__init__.py +0 -0
- src/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- src/utils/__pycache__/data_utils.cpython-311.pyc +0 -0
- src/utils/__pycache__/path_utils.cpython-311.pyc +0 -0
- src/utils/data_utils.py +73 -0
- src/utils/path_utils.py +6 -0
app.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
from evaluate import MisinformationPredictor
|
| 8 |
+
from src.evidence.im2im_retrieval import ImageCorpus
|
| 9 |
+
from src.evidence.text2text_retrieval import SemanticSimilarity
|
| 10 |
+
from src.utils.path_utils import get_project_root
|
| 11 |
+
from typing import List, Optional, Tuple
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
|
| 14 |
+
# Initialize BLIP model and processor
|
| 15 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 16 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
| 17 |
+
"Salesforce/blip-image-captioning-large"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
PROJECT_ROOT = get_project_root()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@dataclass
|
| 24 |
+
class Evidence:
|
| 25 |
+
evidence_id: str
|
| 26 |
+
dataset: str
|
| 27 |
+
text: Optional[str]
|
| 28 |
+
image: Optional[Image.Image]
|
| 29 |
+
caption: Optional[str]
|
| 30 |
+
image_path: Optional[str]
|
| 31 |
+
classification_result_all: Optional[Tuple[str, str, str, str]] = None
|
| 32 |
+
classification_result_final: Optional[str] = None
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
CLASSIFICATION_CATEGORIES = ["support", "refute", "not_enough_information"]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def generate_caption(image: Image.Image) -> str:
|
| 39 |
+
"""Generates a caption for a given image."""
|
| 40 |
+
try:
|
| 41 |
+
with st.spinner("Generating caption..."):
|
| 42 |
+
inputs = processor(image, return_tensors="pt")
|
| 43 |
+
output = model.generate(**inputs)
|
| 44 |
+
return processor.decode(output[0], skip_special_tokens=True)
|
| 45 |
+
except Exception as e:
|
| 46 |
+
st.error(f"Error generating caption: {e}")
|
| 47 |
+
return ""
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def enrich_text_with_caption(text: str, image_caption: str) -> str:
|
| 51 |
+
"""Appends the image caption to the given text."""
|
| 52 |
+
if image_caption:
|
| 53 |
+
return f"{text}. {image_caption}"
|
| 54 |
+
return text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@st.cache_data
|
| 58 |
+
def get_train_df():
|
| 59 |
+
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
|
| 60 |
+
train_csv_path = os.path.join(data_dir, "train_enriched.csv")
|
| 61 |
+
return pd.read_csv(train_csv_path)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@st.cache_data
|
| 65 |
+
def get_test_df():
|
| 66 |
+
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
|
| 67 |
+
train_csv_path = os.path.join(data_dir, "test_enriched.csv")
|
| 68 |
+
return pd.read_csv(train_csv_path)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@st.cache_data
|
| 72 |
+
def get_semantic_similarity(
|
| 73 |
+
train_embeddings_file: str,
|
| 74 |
+
test_embeddings_file: str,
|
| 75 |
+
train_df: pd.DataFrame,
|
| 76 |
+
test_df: pd.DataFrame,
|
| 77 |
+
):
|
| 78 |
+
return SemanticSimilarity(
|
| 79 |
+
train_embeddings_file=train_embeddings_file,
|
| 80 |
+
test_embeddings_file=test_embeddings_file,
|
| 81 |
+
train_df=train_df,
|
| 82 |
+
test_df=test_df,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def retrieve_evidences_by_text(
|
| 87 |
+
query: str,
|
| 88 |
+
top_k: int = 5,
|
| 89 |
+
) -> List[Evidence]:
|
| 90 |
+
"""
|
| 91 |
+
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
query (str): The query text to perform the search.
|
| 95 |
+
top_k (int): Number of top results to retrieve.
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
List[Evidence]: A list of retrieved evidence objects.
|
| 99 |
+
"""
|
| 100 |
+
train_embeddings_file = os.path.join(PROJECT_ROOT, "train_embeddings.h5")
|
| 101 |
+
test_embeddings_file = os.path.join(PROJECT_ROOT, "test_embeddings.h5")
|
| 102 |
+
similarity = get_semantic_similarity(
|
| 103 |
+
train_embeddings_file=train_embeddings_file,
|
| 104 |
+
test_embeddings_file=test_embeddings_file,
|
| 105 |
+
train_df=get_train_df(),
|
| 106 |
+
test_df=get_test_df(),
|
| 107 |
+
)
|
| 108 |
+
evidences = []
|
| 109 |
+
try:
|
| 110 |
+
# Perform semantic search across both train and test datasets
|
| 111 |
+
results = similarity.search(query=query, top_k=top_k)
|
| 112 |
+
|
| 113 |
+
# Retrieve evidence rows based on the search results
|
| 114 |
+
for evidence_id, score in results:
|
| 115 |
+
# Determine whether the ID belongs to train or test set
|
| 116 |
+
if evidence_id.startswith("train_"):
|
| 117 |
+
df = similarity.train_csv
|
| 118 |
+
elif evidence_id.startswith("test_"):
|
| 119 |
+
df = similarity.test_csv
|
| 120 |
+
else:
|
| 121 |
+
continue # Skip invalid IDs
|
| 122 |
+
|
| 123 |
+
# Extract the row by ID
|
| 124 |
+
row = df[df["id"] == int(evidence_id.split("_")[1])].iloc[0]
|
| 125 |
+
evidence_text = row.get("evidence_enriched")
|
| 126 |
+
evidence_image_caption = row.get("evidence_image_caption")
|
| 127 |
+
evidence_image_path = row.get("evidence_image")
|
| 128 |
+
evidence_image = None
|
| 129 |
+
full_image_path = None
|
| 130 |
+
|
| 131 |
+
# Load the image if a valid path is provided
|
| 132 |
+
if pd.notna(evidence_image_path):
|
| 133 |
+
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
|
| 134 |
+
try:
|
| 135 |
+
evidence_image = Image.open(full_image_path).convert("RGB")
|
| 136 |
+
except Exception as e:
|
| 137 |
+
st.error(f"Failed to load image {evidence_image_path}: {e}")
|
| 138 |
+
|
| 139 |
+
evidence_id_number = evidence_id.split("_")[1]
|
| 140 |
+
evidence_dataset = evidence_id.split("_")[0]
|
| 141 |
+
|
| 142 |
+
# Create an Evidence object
|
| 143 |
+
evidences.append(
|
| 144 |
+
Evidence(
|
| 145 |
+
text=evidence_text,
|
| 146 |
+
image=evidence_image,
|
| 147 |
+
caption=evidence_image_caption,
|
| 148 |
+
evidence_id=evidence_id_number,
|
| 149 |
+
dataset=evidence_dataset,
|
| 150 |
+
image_path=full_image_path,
|
| 151 |
+
)
|
| 152 |
+
)
|
| 153 |
+
except Exception as e:
|
| 154 |
+
st.error(f"Error performing semantic search: {e}")
|
| 155 |
+
|
| 156 |
+
return evidences
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
@st.cache_data
|
| 160 |
+
def get_image_corpus(image_features):
|
| 161 |
+
return ImageCorpus(image_features)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def retrieve_evidences_by_image(
|
| 165 |
+
image_path: str,
|
| 166 |
+
top_k: int = 5,
|
| 167 |
+
) -> List[Evidence]:
|
| 168 |
+
"""
|
| 169 |
+
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
query (str): The query text to perform the search.
|
| 173 |
+
top_k (int): Number of top results to retrieve.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
List[Evidence]: A list of retrieved evidence objects.
|
| 177 |
+
"""
|
| 178 |
+
image_features = os.path.join(PROJECT_ROOT, "evidence_features.pkl")
|
| 179 |
+
image_corpus = get_image_corpus(image_features)
|
| 180 |
+
evidences = []
|
| 181 |
+
try:
|
| 182 |
+
# Perform semantic search across both train and test datasets
|
| 183 |
+
results = image_corpus.retrieve_similar_images(image_path, top_k=top_k)
|
| 184 |
+
|
| 185 |
+
# Retrieve evidence rows based on the search results
|
| 186 |
+
for evidence_path, score in results:
|
| 187 |
+
evidence_id = evidence_path.split("/")[-1]
|
| 188 |
+
evidence_id_number = evidence_id.split("_")[0]
|
| 189 |
+
# Determine whether the ID belongs to train or test set
|
| 190 |
+
if "train" in evidence_path:
|
| 191 |
+
df = get_train_df()
|
| 192 |
+
elif "test" in evidence_path:
|
| 193 |
+
df = get_test_df()
|
| 194 |
+
else:
|
| 195 |
+
continue # Skip invalid IDs
|
| 196 |
+
|
| 197 |
+
# Extract the row by ID
|
| 198 |
+
row = df[df["id"] == int(evidence_id_number)].iloc[0]
|
| 199 |
+
evidence_text = row.get("evidence_enriched")
|
| 200 |
+
evidence_image_caption = row.get("evidence_image_caption")
|
| 201 |
+
evidence_image_path = row.get("evidence_image")
|
| 202 |
+
evidence_image = None
|
| 203 |
+
full_image_path = None
|
| 204 |
+
|
| 205 |
+
# Load the image if a valid path is provided
|
| 206 |
+
if pd.notna(evidence_image_path):
|
| 207 |
+
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
|
| 208 |
+
try:
|
| 209 |
+
evidence_image = Image.open(full_image_path).convert("RGB")
|
| 210 |
+
except Exception as e:
|
| 211 |
+
st.error(f"Failed to load image {evidence_image_path}: {e}")
|
| 212 |
+
|
| 213 |
+
# Create an Evidence object
|
| 214 |
+
evidences.append(
|
| 215 |
+
Evidence(
|
| 216 |
+
text=evidence_text,
|
| 217 |
+
image=evidence_image,
|
| 218 |
+
caption=evidence_image_caption,
|
| 219 |
+
dataset=evidence_path.split("/")[-2],
|
| 220 |
+
evidence_id=evidence_id_number,
|
| 221 |
+
image_path=full_image_path,
|
| 222 |
+
)
|
| 223 |
+
)
|
| 224 |
+
except Exception as e:
|
| 225 |
+
st.error(f"Error performing semantic search: {e}")
|
| 226 |
+
|
| 227 |
+
return evidences
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
@st.cache_resource
|
| 231 |
+
def get_predictor():
|
| 232 |
+
return MisinformationPredictor(model_path="ckpts/model.pt", device="cpu")
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def classify_evidence(
|
| 236 |
+
claim_text: str, claim_image_path: str, evidence_text: str, evidence_image_path: str
|
| 237 |
+
) -> Tuple[str, str, str, str]:
|
| 238 |
+
"""Assigns a random classification to each evidence."""
|
| 239 |
+
predictor = get_predictor()
|
| 240 |
+
predictions = predictor.evaluate(
|
| 241 |
+
claim_text, claim_image_path, evidence_text, evidence_image_path
|
| 242 |
+
)
|
| 243 |
+
if predictions:
|
| 244 |
+
return (
|
| 245 |
+
predictions.get("text_text", "not_enough_information"),
|
| 246 |
+
predictions.get("text_image", "not_enough_information"),
|
| 247 |
+
predictions.get("image_text", "not_enough_information"),
|
| 248 |
+
predictions.get("image_image", "not_enough_information"),
|
| 249 |
+
)
|
| 250 |
+
else:
|
| 251 |
+
return (
|
| 252 |
+
"not_enough_information",
|
| 253 |
+
"not_enough_information",
|
| 254 |
+
"not_enough_information",
|
| 255 |
+
"not_enough_information",
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def display_evidence_tab(evidences: List[Evidence], tab_label: str):
|
| 260 |
+
"""Displays evidence in a tabbed format."""
|
| 261 |
+
with st.container():
|
| 262 |
+
for index, evidence in enumerate(evidences):
|
| 263 |
+
with st.container():
|
| 264 |
+
st.subheader(f"Evidence {index + 1}")
|
| 265 |
+
st.write(f"Evidence Dataset: {evidence.dataset}")
|
| 266 |
+
st.write(f"Evidence ID: {evidence.evidence_id}")
|
| 267 |
+
if evidence.image:
|
| 268 |
+
st.image(
|
| 269 |
+
evidence.image,
|
| 270 |
+
caption="Evidence Image",
|
| 271 |
+
use_container_width=True,
|
| 272 |
+
)
|
| 273 |
+
st.text_area(
|
| 274 |
+
"Evidence Caption",
|
| 275 |
+
value=evidence.caption or "No caption available.",
|
| 276 |
+
height=100,
|
| 277 |
+
key=f"caption_{tab_label}_{index}",
|
| 278 |
+
disabled=True,
|
| 279 |
+
)
|
| 280 |
+
st.text_area(
|
| 281 |
+
"Evidence Text",
|
| 282 |
+
value=evidence.text or "No text available.",
|
| 283 |
+
height=100,
|
| 284 |
+
key=f"text_{tab_label}_{index}",
|
| 285 |
+
disabled=True,
|
| 286 |
+
)
|
| 287 |
+
if evidence.classification_result_all:
|
| 288 |
+
st.write("**Classification:**")
|
| 289 |
+
st.write(f"**text|text:** {evidence.classification_result_all[0]}")
|
| 290 |
+
st.write(f"**text|image:** {evidence.classification_result_all[1]}")
|
| 291 |
+
st.write(f"**image|text:** {evidence.classification_result_all[2]}")
|
| 292 |
+
st.write(
|
| 293 |
+
f"**image|image:** {evidence.classification_result_all[3]}"
|
| 294 |
+
)
|
| 295 |
+
st.write(
|
| 296 |
+
f"**Final classification result:** {evidence.classification_result_final}"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def get_final_classification(results: Tuple[str, str, str, str]) -> str:
|
| 301 |
+
text_text = results[0]
|
| 302 |
+
text_image = results[1]
|
| 303 |
+
image_text = results[2]
|
| 304 |
+
image_image = results[3]
|
| 305 |
+
|
| 306 |
+
# Helper function to determine the final classification based on two inputs
|
| 307 |
+
def resolve_classification(val1: str, val2: str) -> str:
|
| 308 |
+
if val1 == val2 and val1 in {"support", "refute"}:
|
| 309 |
+
return val1
|
| 310 |
+
if (val1 in {"support", "refute"} and val2 == "not_enough_information") or (
|
| 311 |
+
val2 in {"support", "refute"} and val1 == "not_enough_information"
|
| 312 |
+
):
|
| 313 |
+
return val1 if val1 != "not_enough_information" else val2
|
| 314 |
+
return "not_enough_information"
|
| 315 |
+
|
| 316 |
+
# Step 1: Check text_text and image_image
|
| 317 |
+
final_result = resolve_classification(text_text, image_image)
|
| 318 |
+
if final_result != "not_enough_information":
|
| 319 |
+
return final_result
|
| 320 |
+
|
| 321 |
+
# Step 2: Check text_image and image_text
|
| 322 |
+
final_result = resolve_classification(text_image, image_text)
|
| 323 |
+
if final_result != "not_enough_information":
|
| 324 |
+
return final_result
|
| 325 |
+
|
| 326 |
+
# Step 3: If still undetermined, return "not_enough_information"
|
| 327 |
+
return "not_enough_information"
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def main():
|
| 331 |
+
st.title("Multimodal Evidence-Based Misinformation Classification")
|
| 332 |
+
st.write("Upload claims that have image and/or text content to verify.")
|
| 333 |
+
|
| 334 |
+
# File uploader for images
|
| 335 |
+
uploaded_image = st.file_uploader(
|
| 336 |
+
"Upload an image (1 max)", type=["jpg", "jpeg", "png"], key="image_uploader"
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
if uploaded_image:
|
| 340 |
+
try:
|
| 341 |
+
image = Image.open(uploaded_image).convert("RGB")
|
| 342 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
| 343 |
+
except Exception as e:
|
| 344 |
+
st.error(f"Failed to display the image: {e}")
|
| 345 |
+
|
| 346 |
+
# Text input field
|
| 347 |
+
input_text = st.text_area("Enter text (max 4096 characters)", "", max_chars=4096)
|
| 348 |
+
|
| 349 |
+
# Sliders for top_k values
|
| 350 |
+
col1, col2 = st.columns(2)
|
| 351 |
+
with col1:
|
| 352 |
+
top_k_text = st.slider(
|
| 353 |
+
"Top-k Text Evidences", min_value=1, max_value=5, value=2, key="top_k_text"
|
| 354 |
+
)
|
| 355 |
+
with col2:
|
| 356 |
+
top_k_image = st.slider(
|
| 357 |
+
"Top-k Image Evidences",
|
| 358 |
+
min_value=1,
|
| 359 |
+
max_value=5,
|
| 360 |
+
value=2,
|
| 361 |
+
key="top_k_image",
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
# Generate Enriched Text button
|
| 365 |
+
if st.button("Verify Claim"):
|
| 366 |
+
if not uploaded_image and not input_text:
|
| 367 |
+
st.warning("Please upload an image or enter text.")
|
| 368 |
+
return
|
| 369 |
+
|
| 370 |
+
progress = st.progress(0)
|
| 371 |
+
|
| 372 |
+
# Step 1: Generate caption
|
| 373 |
+
progress.progress(10)
|
| 374 |
+
st.write("### Step 1: Generating caption...")
|
| 375 |
+
image_caption = ""
|
| 376 |
+
if uploaded_image:
|
| 377 |
+
image_caption = generate_caption(image)
|
| 378 |
+
st.write("**Generated Image Caption:**", image_caption)
|
| 379 |
+
|
| 380 |
+
# Step 2: Enrich text
|
| 381 |
+
progress.progress(40)
|
| 382 |
+
st.write("### Step 2: Enriching text...")
|
| 383 |
+
enriched_text = enrich_text_with_caption(input_text, image_caption)
|
| 384 |
+
st.write("**Enriched Text:**")
|
| 385 |
+
st.write(enriched_text)
|
| 386 |
+
|
| 387 |
+
# Step 3: Retrieve evidences by text
|
| 388 |
+
progress.progress(50)
|
| 389 |
+
st.write("### Step 3: Retrieving evidences by text...")
|
| 390 |
+
if input_text:
|
| 391 |
+
text_evidences = retrieve_evidences_by_text(enriched_text, top_k=top_k_text)
|
| 392 |
+
st.write(f"Retrieved {len(text_evidences)} text evidences.")
|
| 393 |
+
else:
|
| 394 |
+
text_evidences = None
|
| 395 |
+
st.write("Text modality is missing from the input claim!")
|
| 396 |
+
|
| 397 |
+
# Step 4: Retrieve evidences by image
|
| 398 |
+
progress.progress(70)
|
| 399 |
+
st.write("### Step 4: Retrieving evidences by image...")
|
| 400 |
+
if uploaded_image:
|
| 401 |
+
image_evidences = retrieve_evidences_by_image(
|
| 402 |
+
uploaded_image, top_k=top_k_image
|
| 403 |
+
)
|
| 404 |
+
st.write(f"Retrieved {len(image_evidences)} image evidences.")
|
| 405 |
+
else:
|
| 406 |
+
image_evidences = None
|
| 407 |
+
st.write("Image modality is missing from the input claim!")
|
| 408 |
+
|
| 409 |
+
# Step 5: Classify evidences
|
| 410 |
+
progress.progress(90)
|
| 411 |
+
st.write("### Step 5: Verifying claim with retrieved evidences...")
|
| 412 |
+
for evidence in (text_evidences or []) + (image_evidences or []):
|
| 413 |
+
a, b, c, d = classify_evidence(
|
| 414 |
+
claim_text=enriched_text,
|
| 415 |
+
claim_image_path=uploaded_image,
|
| 416 |
+
evidence_text=evidence.text,
|
| 417 |
+
evidence_image_path=evidence.image_path,
|
| 418 |
+
)
|
| 419 |
+
evidence.classification_result_all = a, b, c, d
|
| 420 |
+
evidence.classification_result_final = get_final_classification(
|
| 421 |
+
evidence.classification_result_all
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
# Step 6: Display evidences
|
| 425 |
+
progress.progress(100)
|
| 426 |
+
if text_evidences or image_evidences:
|
| 427 |
+
st.write("## Results")
|
| 428 |
+
tabs = st.tabs(["Text Evidences", "Image Evidences"])
|
| 429 |
+
|
| 430 |
+
with tabs[0]:
|
| 431 |
+
if text_evidences:
|
| 432 |
+
st.write("### Text Evidences")
|
| 433 |
+
display_evidence_tab(text_evidences, "text")
|
| 434 |
+
else:
|
| 435 |
+
st.write("Text modality is missing from the input claim!")
|
| 436 |
+
|
| 437 |
+
with tabs[1]:
|
| 438 |
+
if image_evidences:
|
| 439 |
+
st.write("### Image Evidences")
|
| 440 |
+
display_evidence_tab(image_evidences, "image")
|
| 441 |
+
else:
|
| 442 |
+
st.write("Image modality is missing from the input claim!")
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
if __name__ == "__main__":
|
| 446 |
+
main()
|
ckpts/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15237d481c551aba1df0bae16f0adf43b23ba019e138712010453bda62d39bd0
|
| 3 |
+
size 51850010
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (190 Bytes). View file
|
|
|
src/data_loader/__init__.py
ADDED
|
File without changes
|
src/data_loader/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (202 Bytes). View file
|
|
|
src/data_loader/__pycache__/download_data.cpython-311.pyc
ADDED
|
Binary file (4.94 kB). View file
|
|
|
src/data_loader/__pycache__/download_images.cpython-311.pyc
ADDED
|
Binary file (8.03 kB). View file
|
|
|
src/data_loader/download_data.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import zipfile
|
| 3 |
+
import gdown
|
| 4 |
+
from getpass import getpass
|
| 5 |
+
import shutil
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from src.utils.path_utils import get_project_root
|
| 8 |
+
|
| 9 |
+
# Constants
|
| 10 |
+
PROJECT_ROOT = get_project_root()
|
| 11 |
+
ZIP_FILE_PATH = str(PROJECT_ROOT / "data/raw/factify/factify_data.zip")
|
| 12 |
+
EXTRACTION_DIR = str(PROJECT_ROOT / "data/raw/factify/extracted")
|
| 13 |
+
TEMP_EXTRACTION_DIR = str(PROJECT_ROOT / "data/raw/factify/public_folder")
|
| 14 |
+
GDRIVE_FILE_URL = "https://drive.google.com/uc?id=1ig7XEYU1UKDHrHgDYgqiARWvNdswgFEX"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def ensure_directories():
|
| 18 |
+
"""Ensure necessary directories exist."""
|
| 19 |
+
os.makedirs(os.path.dirname(ZIP_FILE_PATH), exist_ok=True)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def download_zip():
|
| 23 |
+
"""Download the ZIP file if it doesn't already exist."""
|
| 24 |
+
if os.path.exists(ZIP_FILE_PATH):
|
| 25 |
+
print(f"Zip file already exists at {ZIP_FILE_PATH}. Skipping download...")
|
| 26 |
+
return
|
| 27 |
+
print("Downloading zip file from Google Drive...")
|
| 28 |
+
gdown.download(GDRIVE_FILE_URL, ZIP_FILE_PATH, quiet=False)
|
| 29 |
+
print(f"Downloaded zip file to {ZIP_FILE_PATH}")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def extract_zip():
|
| 33 |
+
"""Extract the ZIP file and handle folder and file renaming."""
|
| 34 |
+
train_csv_path = os.path.join(EXTRACTION_DIR, "train.csv")
|
| 35 |
+
if os.path.exists(train_csv_path):
|
| 36 |
+
print(f"{train_csv_path} already exists. Skipping extraction...")
|
| 37 |
+
return
|
| 38 |
+
print("Extracting zip file...")
|
| 39 |
+
# Get password for the zip file
|
| 40 |
+
password = getpass("Enter the password for the zip file: ")
|
| 41 |
+
with zipfile.ZipFile(ZIP_FILE_PATH, "r") as zip_ref:
|
| 42 |
+
try:
|
| 43 |
+
zip_ref.extractall(
|
| 44 |
+
str(PROJECT_ROOT / "data/raw/factify/"), pwd=password.encode()
|
| 45 |
+
)
|
| 46 |
+
print(f"Extracted files to temporary folder: {TEMP_EXTRACTION_DIR}")
|
| 47 |
+
except RuntimeError:
|
| 48 |
+
print("Incorrect password. Exiting...")
|
| 49 |
+
exit(1)
|
| 50 |
+
|
| 51 |
+
# Remove existing extracted directory if it exists
|
| 52 |
+
if os.path.exists(EXTRACTION_DIR):
|
| 53 |
+
shutil.rmtree(EXTRACTION_DIR)
|
| 54 |
+
print(f"Removed existing directory: {EXTRACTION_DIR}")
|
| 55 |
+
|
| 56 |
+
# Rename extracted folder
|
| 57 |
+
if os.path.exists(TEMP_EXTRACTION_DIR):
|
| 58 |
+
os.rename(TEMP_EXTRACTION_DIR, EXTRACTION_DIR)
|
| 59 |
+
print(f"Renamed folder {TEMP_EXTRACTION_DIR} to {EXTRACTION_DIR}")
|
| 60 |
+
|
| 61 |
+
# Rename val.csv to test.csv
|
| 62 |
+
val_csv_path = os.path.join(EXTRACTION_DIR, "val.csv")
|
| 63 |
+
test_csv_path = os.path.join(EXTRACTION_DIR, "test.csv")
|
| 64 |
+
if os.path.exists(val_csv_path):
|
| 65 |
+
os.rename(val_csv_path, test_csv_path)
|
| 66 |
+
print(f"Renamed {val_csv_path} to {test_csv_path}")
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def main():
|
| 70 |
+
ensure_directories()
|
| 71 |
+
download_zip()
|
| 72 |
+
extract_zip()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
main()
|
src/data_loader/download_data_mocheg.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
import tarfile
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
DATA_URL: str = (
|
| 7 |
+
"http://nlplab1.cs.vt.edu/~menglong/project/multimodal/fact_checking/MOCHEG/dataset/latest_dataset/mocheg_with_tweet_2023_03.tar.gz"
|
| 8 |
+
)
|
| 9 |
+
RAW_DATA_DIR: str = "data/raw"
|
| 10 |
+
ARCHIVE_NAME: str = "mocheg_with_tweet_2023_03.tar.gz"
|
| 11 |
+
CHUNK_SIZE: int = 16 * 1024 * 1024 # 16 MB
|
| 12 |
+
|
| 13 |
+
# Ensure the raw data directory exists
|
| 14 |
+
os.makedirs(RAW_DATA_DIR, exist_ok=True)
|
| 15 |
+
archive_path: str = os.path.join(RAW_DATA_DIR, ARCHIVE_NAME)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def check_disk_space(required_space_gb: int) -> bool:
|
| 19 |
+
"""Check if there is enough free disk space."""
|
| 20 |
+
stat = os.statvfs(RAW_DATA_DIR)
|
| 21 |
+
free_space_gb: float = (stat.f_bavail * stat.f_frsize) / (1024**3)
|
| 22 |
+
return free_space_gb > required_space_gb
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def download_data() -> None:
|
| 26 |
+
"""Download the data if not already present and extract it."""
|
| 27 |
+
# Check if the data file already exists
|
| 28 |
+
if os.path.exists(archive_path):
|
| 29 |
+
print(f"Data already downloaded at {archive_path}. Skipping download.")
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
# Ensure enough disk space (approximate)
|
| 33 |
+
required_space_gb: int = 80 # Adjust based on expected file size + extraction space
|
| 34 |
+
if not check_disk_space(required_space_gb):
|
| 35 |
+
print(f"Not enough disk space. At least {required_space_gb} GB required.")
|
| 36 |
+
return
|
| 37 |
+
|
| 38 |
+
# Download the data in larger chunks
|
| 39 |
+
print(f"Downloading data from {DATA_URL}...")
|
| 40 |
+
response = requests.get(DATA_URL, stream=True)
|
| 41 |
+
response.raise_for_status() # Ensure the URL is accessible
|
| 42 |
+
|
| 43 |
+
total_size: int = int(response.headers.get("content-length", 0))
|
| 44 |
+
with open(archive_path, "wb") as file, tqdm(
|
| 45 |
+
desc=ARCHIVE_NAME,
|
| 46 |
+
total=total_size,
|
| 47 |
+
unit="B",
|
| 48 |
+
unit_scale=True,
|
| 49 |
+
unit_divisor=1024,
|
| 50 |
+
) as progress_bar:
|
| 51 |
+
for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
|
| 52 |
+
if chunk:
|
| 53 |
+
file.write(chunk)
|
| 54 |
+
progress_bar.update(len(chunk))
|
| 55 |
+
|
| 56 |
+
print(f"Download completed: {archive_path}")
|
| 57 |
+
|
| 58 |
+
# Extract the tar.gz file
|
| 59 |
+
extract_data(archive_path)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def extract_data(archive_path: str) -> None:
|
| 63 |
+
"""Extract the downloaded tar.gz file."""
|
| 64 |
+
print(f"Extracting data from {archive_path}...")
|
| 65 |
+
with tarfile.open(archive_path, "r:gz") as tar:
|
| 66 |
+
tar.extractall(path=RAW_DATA_DIR)
|
| 67 |
+
print(f"Data extracted to {RAW_DATA_DIR}")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
if __name__ == "__main__":
|
| 71 |
+
download_data()
|
src/data_loader/download_images.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import requests
|
| 5 |
+
import json
|
| 6 |
+
import io
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 9 |
+
from collections import defaultdict
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
from src.utils.data_utils import HEADERS
|
| 13 |
+
from src.utils.path_utils import get_project_root
|
| 14 |
+
|
| 15 |
+
# Constants
|
| 16 |
+
PROJECT_ROOT = get_project_root()
|
| 17 |
+
EXTRACTION_DIR = str(PROJECT_ROOT / "data/raw/factify/extracted")
|
| 18 |
+
IMAGES_DIR = os.path.join(EXTRACTION_DIR, "images")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def ensure_directories(images_folder):
|
| 22 |
+
"""Ensure the image directory exists."""
|
| 23 |
+
os.makedirs(images_folder, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def download_image(url, save_path):
|
| 27 |
+
"""Download a single image if not already downloaded."""
|
| 28 |
+
# Check if the image already exists
|
| 29 |
+
if os.path.exists(save_path):
|
| 30 |
+
print(f"Image already exists: {save_path}")
|
| 31 |
+
return True
|
| 32 |
+
|
| 33 |
+
headers = {
|
| 34 |
+
"User-Agent": (
|
| 35 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) "
|
| 36 |
+
"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"
|
| 37 |
+
)
|
| 38 |
+
}
|
| 39 |
+
try:
|
| 40 |
+
response = requests.get(url, headers=headers, stream=True, timeout=30)
|
| 41 |
+
response.raise_for_status() # Raise an error for HTTP issues
|
| 42 |
+
img = Image.open(io.BytesIO(response.content))
|
| 43 |
+
img = img.convert("RGB") # Ensure the image is in RGB format
|
| 44 |
+
img.save(save_path)
|
| 45 |
+
print(f"Downloaded and saved image: {save_path}")
|
| 46 |
+
return True
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Failed to download image from {url}: {e}")
|
| 49 |
+
return False
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def process_image(row, images_folder, stats, dataset_name):
|
| 53 |
+
"""Process claim and evidence image downloads."""
|
| 54 |
+
file_id = str(row["id"])
|
| 55 |
+
category = row.get("category", "Unknown")
|
| 56 |
+
claim_image_url = row.get("claim_image", "")
|
| 57 |
+
evidence_image_url = row.get("evidence_image", "")
|
| 58 |
+
|
| 59 |
+
# Ensure category stats exist
|
| 60 |
+
stats["categories"].setdefault(
|
| 61 |
+
category,
|
| 62 |
+
{
|
| 63 |
+
"total_claim": 0,
|
| 64 |
+
"successful_claim": 0,
|
| 65 |
+
"total_evidence": 0,
|
| 66 |
+
"successful_evidence": 0,
|
| 67 |
+
},
|
| 68 |
+
)
|
| 69 |
+
stats["categories"][category]["total_claim"] += 1
|
| 70 |
+
stats["categories"][category]["total_evidence"] += 1
|
| 71 |
+
|
| 72 |
+
# Download claim image
|
| 73 |
+
if claim_image_url:
|
| 74 |
+
success = download_image(
|
| 75 |
+
claim_image_url, os.path.join(images_folder, f"{file_id}_claim.jpg")
|
| 76 |
+
)
|
| 77 |
+
if success:
|
| 78 |
+
stats["successful_claim"] += 1
|
| 79 |
+
stats["categories"][category]["successful_claim"] += 1
|
| 80 |
+
|
| 81 |
+
# Download evidence image
|
| 82 |
+
if evidence_image_url:
|
| 83 |
+
success = download_image(
|
| 84 |
+
evidence_image_url, os.path.join(images_folder, f"{file_id}_evidence.jpg")
|
| 85 |
+
)
|
| 86 |
+
if success:
|
| 87 |
+
stats["successful_evidence"] += 1
|
| 88 |
+
stats["categories"][category]["successful_evidence"] += 1
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def download_images(dataset, use_threading):
|
| 92 |
+
"""Download images for the specified dataset (train or test)."""
|
| 93 |
+
csv_path = os.path.join(EXTRACTION_DIR, f"{dataset}.csv")
|
| 94 |
+
images_folder = os.path.join(IMAGES_DIR, dataset)
|
| 95 |
+
stats_file_path = os.path.join(
|
| 96 |
+
EXTRACTION_DIR, f"{dataset}_image_download_stats.json"
|
| 97 |
+
)
|
| 98 |
+
ensure_directories(images_folder)
|
| 99 |
+
|
| 100 |
+
if not os.path.exists(csv_path):
|
| 101 |
+
print(f"CSV file not found for {dataset}: {csv_path}")
|
| 102 |
+
return
|
| 103 |
+
|
| 104 |
+
stats = {
|
| 105 |
+
"successful_claim": 0,
|
| 106 |
+
"successful_evidence": 0,
|
| 107 |
+
"categories": defaultdict(
|
| 108 |
+
lambda: {
|
| 109 |
+
"total_claim": 0,
|
| 110 |
+
"successful_claim": 0,
|
| 111 |
+
"total_evidence": 0,
|
| 112 |
+
"successful_evidence": 0,
|
| 113 |
+
}
|
| 114 |
+
),
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
df = pd.read_csv(csv_path, names=HEADERS, header=None, sep="\t", skiprows=1)
|
| 118 |
+
|
| 119 |
+
if use_threading:
|
| 120 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
| 121 |
+
futures = [
|
| 122 |
+
executor.submit(process_image, row, images_folder, stats, dataset)
|
| 123 |
+
for _, row in df.iterrows()
|
| 124 |
+
]
|
| 125 |
+
for _ in tqdm(
|
| 126 |
+
as_completed(futures),
|
| 127 |
+
total=len(futures),
|
| 128 |
+
desc=f"Downloading {dataset} images",
|
| 129 |
+
):
|
| 130 |
+
pass
|
| 131 |
+
else:
|
| 132 |
+
for _, row in tqdm(
|
| 133 |
+
df.iterrows(), total=len(df), desc=f"Downloading {dataset} images"
|
| 134 |
+
):
|
| 135 |
+
process_image(row, images_folder, stats, dataset)
|
| 136 |
+
|
| 137 |
+
with open(stats_file_path, "w") as stats_file:
|
| 138 |
+
json.dump(stats, stats_file, indent=4)
|
| 139 |
+
print(f"Image download stats saved to {stats_file_path}")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def main():
|
| 143 |
+
parser = argparse.ArgumentParser(description="Download images for Factify dataset.")
|
| 144 |
+
parser.add_argument(
|
| 145 |
+
"--dataset",
|
| 146 |
+
choices=["train", "test"],
|
| 147 |
+
help="Specify which dataset to download images for (train or test). If not specified, both will be downloaded.",
|
| 148 |
+
)
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--use-threading",
|
| 151 |
+
action="store_true",
|
| 152 |
+
default=True,
|
| 153 |
+
help="Enable threading for image downloads (default: True).",
|
| 154 |
+
)
|
| 155 |
+
args = parser.parse_args()
|
| 156 |
+
|
| 157 |
+
if args.dataset:
|
| 158 |
+
# Run for the specified dataset
|
| 159 |
+
download_images(args.dataset, args.use_threading)
|
| 160 |
+
else:
|
| 161 |
+
# Run for both train and test if no dataset is specified
|
| 162 |
+
print("No dataset specified. Downloading images for both train and test...")
|
| 163 |
+
for dataset in ["train", "test"]:
|
| 164 |
+
download_images(dataset, args.use_threading)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
main()
|
src/data_loader/preprocess_embeddings.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import h5py
|
| 2 |
+
import torch
|
| 3 |
+
import logging
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from transformers import AutoTokenizer, AutoModel, Swinv2Model
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@torch.no_grad()
|
| 11 |
+
def create_embeddings_h5(input_h5_path, output_h5_path, batch_size=32, device="cuda"):
|
| 12 |
+
"""
|
| 13 |
+
Create a new H5 file with pre-computed embeddings from text and images.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
input_h5_path (str): Path to input H5 file with raw data
|
| 17 |
+
output_h5_path (str): Path where to save the new H5 file with embeddings
|
| 18 |
+
batch_size (int): Batch size for processing
|
| 19 |
+
device (str): Device to use for computation
|
| 20 |
+
"""
|
| 21 |
+
logger.info(f"Creating embeddings H5 file from {input_h5_path}")
|
| 22 |
+
|
| 23 |
+
# Initialize models
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
|
| 25 |
+
text_encoder = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall").to(device)
|
| 26 |
+
image_encoder = Swinv2Model.from_pretrained(
|
| 27 |
+
"microsoft/swinv2-base-patch4-window8-256"
|
| 28 |
+
).to(device)
|
| 29 |
+
|
| 30 |
+
# Set models to eval mode
|
| 31 |
+
text_encoder.eval()
|
| 32 |
+
image_encoder.eval()
|
| 33 |
+
|
| 34 |
+
# Open input H5 file
|
| 35 |
+
with h5py.File(input_h5_path, "r") as in_f, h5py.File(output_h5_path, "w") as out_f:
|
| 36 |
+
total_samples = len(in_f.keys())
|
| 37 |
+
|
| 38 |
+
# Process in batches
|
| 39 |
+
for batch_start in tqdm(range(0, total_samples, batch_size)):
|
| 40 |
+
batch_end = min(batch_start + batch_size, total_samples)
|
| 41 |
+
batch_indices = range(batch_start, batch_end)
|
| 42 |
+
|
| 43 |
+
# Collect batch data
|
| 44 |
+
claim_texts = []
|
| 45 |
+
doc_texts = []
|
| 46 |
+
claim_images = []
|
| 47 |
+
doc_images = []
|
| 48 |
+
labels = []
|
| 49 |
+
|
| 50 |
+
for idx in batch_indices:
|
| 51 |
+
sample = in_f[str(idx)]
|
| 52 |
+
claim_texts.append(sample["claim"][()].decode())
|
| 53 |
+
doc_texts.append(sample["document"][()].decode())
|
| 54 |
+
claim_images.append(torch.from_numpy(sample["claim_image"][()]))
|
| 55 |
+
doc_images.append(torch.from_numpy(sample["document_image"][()]))
|
| 56 |
+
labels.append(sample["labels"][()])
|
| 57 |
+
|
| 58 |
+
# Convert to tensors
|
| 59 |
+
claim_images = torch.stack(claim_images).to(device)
|
| 60 |
+
doc_images = torch.stack(doc_images).to(device)
|
| 61 |
+
|
| 62 |
+
# Get text embeddings with fixed sequence length
|
| 63 |
+
claim_text_inputs = tokenizer(
|
| 64 |
+
claim_texts,
|
| 65 |
+
truncation=True,
|
| 66 |
+
padding="max_length", # Changed to max_length
|
| 67 |
+
return_tensors="pt",
|
| 68 |
+
max_length=512,
|
| 69 |
+
).to(device)
|
| 70 |
+
|
| 71 |
+
doc_text_inputs = tokenizer(
|
| 72 |
+
doc_texts,
|
| 73 |
+
truncation=True,
|
| 74 |
+
padding="max_length", # Changed to max_length
|
| 75 |
+
return_tensors="pt",
|
| 76 |
+
max_length=512,
|
| 77 |
+
).to(device)
|
| 78 |
+
|
| 79 |
+
claim_text_embeds = text_encoder(**claim_text_inputs).last_hidden_state
|
| 80 |
+
doc_text_embeds = text_encoder(**doc_text_inputs).last_hidden_state
|
| 81 |
+
|
| 82 |
+
# Verify shapes
|
| 83 |
+
assert (
|
| 84 |
+
claim_text_embeds.shape[1] == 512
|
| 85 |
+
), f"Unexpected claim text shape: {claim_text_embeds.shape}"
|
| 86 |
+
assert (
|
| 87 |
+
doc_text_embeds.shape[1] == 512
|
| 88 |
+
), f"Unexpected doc text shape: {doc_text_embeds.shape}"
|
| 89 |
+
|
| 90 |
+
# Get image embeddings
|
| 91 |
+
claim_image_embeds = image_encoder(claim_images).last_hidden_state
|
| 92 |
+
doc_image_embeds = image_encoder(doc_images).last_hidden_state
|
| 93 |
+
|
| 94 |
+
# Store embeddings and labels
|
| 95 |
+
for batch_idx, idx in enumerate(batch_indices):
|
| 96 |
+
sample_group = out_f.create_group(str(idx))
|
| 97 |
+
|
| 98 |
+
# Store embeddings
|
| 99 |
+
sample_group.create_dataset(
|
| 100 |
+
"claim_text_embeds", data=claim_text_embeds[batch_idx].cpu().numpy()
|
| 101 |
+
)
|
| 102 |
+
sample_group.create_dataset(
|
| 103 |
+
"doc_text_embeds", data=doc_text_embeds[batch_idx].cpu().numpy()
|
| 104 |
+
)
|
| 105 |
+
sample_group.create_dataset(
|
| 106 |
+
"claim_image_embeds",
|
| 107 |
+
data=claim_image_embeds[batch_idx].cpu().numpy(),
|
| 108 |
+
)
|
| 109 |
+
sample_group.create_dataset(
|
| 110 |
+
"doc_image_embeds", data=doc_image_embeds[batch_idx].cpu().numpy()
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Store labels
|
| 114 |
+
sample_group.create_dataset("labels", data=labels[batch_idx])
|
| 115 |
+
|
| 116 |
+
logger.info(f"Created embeddings H5 file at {output_h5_path}")
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
# Set up logging
|
| 121 |
+
logging.basicConfig(level=logging.INFO)
|
| 122 |
+
|
| 123 |
+
# Example usage
|
| 124 |
+
create_embeddings_h5(
|
| 125 |
+
input_h5_path="data/preprocessed/train.h5",
|
| 126 |
+
output_h5_path="data/preprocessed/train_embeddings.h5",
|
| 127 |
+
batch_size=32,
|
| 128 |
+
device="cuda:0",
|
| 129 |
+
)
|
src/demo/__init__.py
ADDED
|
File without changes
|
src/demo/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (195 Bytes). View file
|
|
|
src/demo/__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (16.5 kB). View file
|
|
|
src/demo/app.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
from evaluate import MisinformationPredictor
|
| 8 |
+
from src.evidence.im2im_retrieval import ImageCorpus
|
| 9 |
+
from src.evidence.text2text_retrieval import SemanticSimilarity
|
| 10 |
+
from src.utils.path_utils import get_project_root
|
| 11 |
+
from typing import List, Optional, Tuple
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
|
| 14 |
+
# Initialize BLIP model and processor
|
| 15 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 16 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
| 17 |
+
"Salesforce/blip-image-captioning-large"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
PROJECT_ROOT = get_project_root()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@dataclass
|
| 24 |
+
class Evidence:
|
| 25 |
+
evidence_id: str
|
| 26 |
+
dataset: str
|
| 27 |
+
text: Optional[str]
|
| 28 |
+
image: Optional[Image.Image]
|
| 29 |
+
caption: Optional[str]
|
| 30 |
+
image_path: Optional[str]
|
| 31 |
+
classification_result_all: Optional[Tuple[str, str, str, str]] = None
|
| 32 |
+
classification_result_final: Optional[str] = None
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
CLASSIFICATION_CATEGORIES = ["support", "refute", "not_enough_information"]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def generate_caption(image: Image.Image) -> str:
|
| 39 |
+
"""Generates a caption for a given image."""
|
| 40 |
+
try:
|
| 41 |
+
with st.spinner("Generating caption..."):
|
| 42 |
+
inputs = processor(image, return_tensors="pt")
|
| 43 |
+
output = model.generate(**inputs)
|
| 44 |
+
return processor.decode(output[0], skip_special_tokens=True)
|
| 45 |
+
except Exception as e:
|
| 46 |
+
st.error(f"Error generating caption: {e}")
|
| 47 |
+
return ""
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def enrich_text_with_caption(text: str, image_caption: str) -> str:
|
| 51 |
+
"""Appends the image caption to the given text."""
|
| 52 |
+
if image_caption:
|
| 53 |
+
return f"{text}. {image_caption}"
|
| 54 |
+
return text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@st.cache_data
|
| 58 |
+
def get_train_df():
|
| 59 |
+
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
|
| 60 |
+
train_csv_path = os.path.join(data_dir, "train_enriched.csv")
|
| 61 |
+
return pd.read_csv(train_csv_path)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@st.cache_data
|
| 65 |
+
def get_test_df():
|
| 66 |
+
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
|
| 67 |
+
train_csv_path = os.path.join(data_dir, "test_enriched.csv")
|
| 68 |
+
return pd.read_csv(train_csv_path)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@st.cache_data
|
| 72 |
+
def get_semantic_similarity(
|
| 73 |
+
train_embeddings_file: str,
|
| 74 |
+
test_embeddings_file: str,
|
| 75 |
+
train_df: pd.DataFrame,
|
| 76 |
+
test_df: pd.DataFrame,
|
| 77 |
+
):
|
| 78 |
+
return SemanticSimilarity(
|
| 79 |
+
train_embeddings_file=train_embeddings_file,
|
| 80 |
+
test_embeddings_file=test_embeddings_file,
|
| 81 |
+
train_df=train_df,
|
| 82 |
+
test_df=test_df,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def retrieve_evidences_by_text(
|
| 87 |
+
query: str,
|
| 88 |
+
top_k: int = 5,
|
| 89 |
+
) -> List[Evidence]:
|
| 90 |
+
"""
|
| 91 |
+
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
query (str): The query text to perform the search.
|
| 95 |
+
top_k (int): Number of top results to retrieve.
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
List[Evidence]: A list of retrieved evidence objects.
|
| 99 |
+
"""
|
| 100 |
+
train_embeddings_file = os.path.join(PROJECT_ROOT, "train_embeddings.h5")
|
| 101 |
+
test_embeddings_file = os.path.join(PROJECT_ROOT, "test_embeddings.h5")
|
| 102 |
+
similarity = get_semantic_similarity(
|
| 103 |
+
train_embeddings_file=train_embeddings_file,
|
| 104 |
+
test_embeddings_file=test_embeddings_file,
|
| 105 |
+
train_df=get_train_df(),
|
| 106 |
+
test_df=get_test_df(),
|
| 107 |
+
)
|
| 108 |
+
evidences = []
|
| 109 |
+
try:
|
| 110 |
+
# Perform semantic search across both train and test datasets
|
| 111 |
+
results = similarity.search(query=query, top_k=top_k)
|
| 112 |
+
|
| 113 |
+
# Retrieve evidence rows based on the search results
|
| 114 |
+
for evidence_id, score in results:
|
| 115 |
+
# Determine whether the ID belongs to train or test set
|
| 116 |
+
if evidence_id.startswith("train_"):
|
| 117 |
+
df = similarity.train_csv
|
| 118 |
+
elif evidence_id.startswith("test_"):
|
| 119 |
+
df = similarity.test_csv
|
| 120 |
+
else:
|
| 121 |
+
continue # Skip invalid IDs
|
| 122 |
+
|
| 123 |
+
# Extract the row by ID
|
| 124 |
+
row = df[df["id"] == int(evidence_id.split("_")[1])].iloc[0]
|
| 125 |
+
evidence_text = row.get("evidence_enriched")
|
| 126 |
+
evidence_image_caption = row.get("evidence_image_caption")
|
| 127 |
+
evidence_image_path = row.get("evidence_image")
|
| 128 |
+
evidence_image = None
|
| 129 |
+
full_image_path = None
|
| 130 |
+
|
| 131 |
+
# Load the image if a valid path is provided
|
| 132 |
+
if pd.notna(evidence_image_path):
|
| 133 |
+
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
|
| 134 |
+
try:
|
| 135 |
+
evidence_image = Image.open(full_image_path).convert("RGB")
|
| 136 |
+
except Exception as e:
|
| 137 |
+
st.error(f"Failed to load image {evidence_image_path}: {e}")
|
| 138 |
+
|
| 139 |
+
evidence_id_number = evidence_id.split("_")[1]
|
| 140 |
+
evidence_dataset = evidence_id.split("_")[0]
|
| 141 |
+
|
| 142 |
+
# Create an Evidence object
|
| 143 |
+
evidences.append(
|
| 144 |
+
Evidence(
|
| 145 |
+
text=evidence_text,
|
| 146 |
+
image=evidence_image,
|
| 147 |
+
caption=evidence_image_caption,
|
| 148 |
+
evidence_id=evidence_id_number,
|
| 149 |
+
dataset=evidence_dataset,
|
| 150 |
+
image_path=full_image_path,
|
| 151 |
+
)
|
| 152 |
+
)
|
| 153 |
+
except Exception as e:
|
| 154 |
+
st.error(f"Error performing semantic search: {e}")
|
| 155 |
+
|
| 156 |
+
return evidences
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
@st.cache_data
|
| 160 |
+
def get_image_corpus(image_features):
|
| 161 |
+
return ImageCorpus(image_features)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def retrieve_evidences_by_image(
|
| 165 |
+
image_path: str,
|
| 166 |
+
top_k: int = 5,
|
| 167 |
+
) -> List[Evidence]:
|
| 168 |
+
"""
|
| 169 |
+
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
query (str): The query text to perform the search.
|
| 173 |
+
top_k (int): Number of top results to retrieve.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
List[Evidence]: A list of retrieved evidence objects.
|
| 177 |
+
"""
|
| 178 |
+
image_features = os.path.join(PROJECT_ROOT, "evidence_features.pkl")
|
| 179 |
+
image_corpus = get_image_corpus(image_features)
|
| 180 |
+
evidences = []
|
| 181 |
+
try:
|
| 182 |
+
# Perform semantic search across both train and test datasets
|
| 183 |
+
results = image_corpus.retrieve_similar_images(image_path, top_k=top_k)
|
| 184 |
+
|
| 185 |
+
# Retrieve evidence rows based on the search results
|
| 186 |
+
for evidence_path, score in results:
|
| 187 |
+
evidence_id = evidence_path.split("/")[-1]
|
| 188 |
+
evidence_id_number = evidence_id.split("_")[0]
|
| 189 |
+
# Determine whether the ID belongs to train or test set
|
| 190 |
+
if "train" in evidence_path:
|
| 191 |
+
df = get_train_df()
|
| 192 |
+
elif "test" in evidence_path:
|
| 193 |
+
df = get_test_df()
|
| 194 |
+
else:
|
| 195 |
+
continue # Skip invalid IDs
|
| 196 |
+
|
| 197 |
+
# Extract the row by ID
|
| 198 |
+
row = df[df["id"] == int(evidence_id_number)].iloc[0]
|
| 199 |
+
evidence_text = row.get("evidence_enriched")
|
| 200 |
+
evidence_image_caption = row.get("evidence_image_caption")
|
| 201 |
+
evidence_image_path = row.get("evidence_image")
|
| 202 |
+
evidence_image = None
|
| 203 |
+
full_image_path = None
|
| 204 |
+
|
| 205 |
+
# Load the image if a valid path is provided
|
| 206 |
+
if pd.notna(evidence_image_path):
|
| 207 |
+
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
|
| 208 |
+
try:
|
| 209 |
+
evidence_image = Image.open(full_image_path).convert("RGB")
|
| 210 |
+
except Exception as e:
|
| 211 |
+
st.error(f"Failed to load image {evidence_image_path}: {e}")
|
| 212 |
+
|
| 213 |
+
# Create an Evidence object
|
| 214 |
+
evidences.append(
|
| 215 |
+
Evidence(
|
| 216 |
+
text=evidence_text,
|
| 217 |
+
image=evidence_image,
|
| 218 |
+
caption=evidence_image_caption,
|
| 219 |
+
dataset=evidence_path.split("/")[-2],
|
| 220 |
+
evidence_id=evidence_id_number,
|
| 221 |
+
image_path=full_image_path,
|
| 222 |
+
)
|
| 223 |
+
)
|
| 224 |
+
except Exception as e:
|
| 225 |
+
st.error(f"Error performing semantic search: {e}")
|
| 226 |
+
|
| 227 |
+
return evidences
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
@st.cache_resource
|
| 231 |
+
def get_predictor():
|
| 232 |
+
return MisinformationPredictor(model_path="ckpts/model.pt", device="cpu")
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def classify_evidence(
|
| 236 |
+
claim_text: str, claim_image_path: str, evidence_text: str, evidence_image_path: str
|
| 237 |
+
) -> Tuple[str, str, str, str]:
|
| 238 |
+
"""Assigns a random classification to each evidence."""
|
| 239 |
+
predictor = get_predictor()
|
| 240 |
+
predictions = predictor.evaluate(
|
| 241 |
+
claim_text, claim_image_path, evidence_text, evidence_image_path
|
| 242 |
+
)
|
| 243 |
+
if predictions:
|
| 244 |
+
return (
|
| 245 |
+
predictions.get("text_text", "not_enough_information"),
|
| 246 |
+
predictions.get("text_image", "not_enough_information"),
|
| 247 |
+
predictions.get("image_text", "not_enough_information"),
|
| 248 |
+
predictions.get("image_image", "not_enough_information"),
|
| 249 |
+
)
|
| 250 |
+
else:
|
| 251 |
+
return (
|
| 252 |
+
"not_enough_information",
|
| 253 |
+
"not_enough_information",
|
| 254 |
+
"not_enough_information",
|
| 255 |
+
"not_enough_information",
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def display_evidence_tab(evidences: List[Evidence], tab_label: str):
|
| 260 |
+
"""Displays evidence in a tabbed format."""
|
| 261 |
+
with st.container():
|
| 262 |
+
for index, evidence in enumerate(evidences):
|
| 263 |
+
with st.container():
|
| 264 |
+
st.subheader(f"Evidence {index + 1}")
|
| 265 |
+
st.write(f"Evidence Dataset: {evidence.dataset}")
|
| 266 |
+
st.write(f"Evidence ID: {evidence.evidence_id}")
|
| 267 |
+
if evidence.image:
|
| 268 |
+
st.image(
|
| 269 |
+
evidence.image,
|
| 270 |
+
caption="Evidence Image",
|
| 271 |
+
use_container_width=True,
|
| 272 |
+
)
|
| 273 |
+
st.text_area(
|
| 274 |
+
"Evidence Caption",
|
| 275 |
+
value=evidence.caption or "No caption available.",
|
| 276 |
+
height=100,
|
| 277 |
+
key=f"caption_{tab_label}_{index}",
|
| 278 |
+
disabled=True,
|
| 279 |
+
)
|
| 280 |
+
st.text_area(
|
| 281 |
+
"Evidence Text",
|
| 282 |
+
value=evidence.text or "No text available.",
|
| 283 |
+
height=100,
|
| 284 |
+
key=f"text_{tab_label}_{index}",
|
| 285 |
+
disabled=True,
|
| 286 |
+
)
|
| 287 |
+
if evidence.classification_result_all:
|
| 288 |
+
st.write("**Classification:**")
|
| 289 |
+
st.write(f"**text|text:** {evidence.classification_result_all[0]}")
|
| 290 |
+
st.write(f"**text|image:** {evidence.classification_result_all[1]}")
|
| 291 |
+
st.write(f"**image|text:** {evidence.classification_result_all[2]}")
|
| 292 |
+
st.write(
|
| 293 |
+
f"**image|image:** {evidence.classification_result_all[3]}"
|
| 294 |
+
)
|
| 295 |
+
st.write(
|
| 296 |
+
f"**Final classification result:** {evidence.classification_result_final}"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def get_final_classification(results: Tuple[str, str, str, str]) -> str:
|
| 301 |
+
text_text = results[0]
|
| 302 |
+
text_image = results[1]
|
| 303 |
+
image_text = results[2]
|
| 304 |
+
image_image = results[3]
|
| 305 |
+
|
| 306 |
+
# Helper function to determine the final classification based on two inputs
|
| 307 |
+
def resolve_classification(val1: str, val2: str) -> str:
|
| 308 |
+
if val1 == val2 and val1 in {"support", "refute"}:
|
| 309 |
+
return val1
|
| 310 |
+
if (val1 in {"support", "refute"} and val2 == "not_enough_information") or (
|
| 311 |
+
val2 in {"support", "refute"} and val1 == "not_enough_information"
|
| 312 |
+
):
|
| 313 |
+
return val1 if val1 != "not_enough_information" else val2
|
| 314 |
+
return "not_enough_information"
|
| 315 |
+
|
| 316 |
+
# Step 1: Check text_text and image_image
|
| 317 |
+
final_result = resolve_classification(text_text, image_image)
|
| 318 |
+
if final_result != "not_enough_information":
|
| 319 |
+
return final_result
|
| 320 |
+
|
| 321 |
+
# Step 2: Check text_image and image_text
|
| 322 |
+
final_result = resolve_classification(text_image, image_text)
|
| 323 |
+
if final_result != "not_enough_information":
|
| 324 |
+
return final_result
|
| 325 |
+
|
| 326 |
+
# Step 3: If still undetermined, return "not_enough_information"
|
| 327 |
+
return "not_enough_information"
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def main():
|
| 331 |
+
st.title("Multimodal Evidence-Based Misinformation Classification")
|
| 332 |
+
st.write("Upload claims that have image and/or text content to verify.")
|
| 333 |
+
|
| 334 |
+
# File uploader for images
|
| 335 |
+
uploaded_image = st.file_uploader(
|
| 336 |
+
"Upload an image (1 max)", type=["jpg", "jpeg", "png"], key="image_uploader"
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
if uploaded_image:
|
| 340 |
+
try:
|
| 341 |
+
image = Image.open(uploaded_image).convert("RGB")
|
| 342 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
| 343 |
+
except Exception as e:
|
| 344 |
+
st.error(f"Failed to display the image: {e}")
|
| 345 |
+
|
| 346 |
+
# Text input field
|
| 347 |
+
input_text = st.text_area("Enter text (max 4096 characters)", "", max_chars=4096)
|
| 348 |
+
|
| 349 |
+
# Sliders for top_k values
|
| 350 |
+
col1, col2 = st.columns(2)
|
| 351 |
+
with col1:
|
| 352 |
+
top_k_text = st.slider(
|
| 353 |
+
"Top-k Text Evidences", min_value=1, max_value=5, value=2, key="top_k_text"
|
| 354 |
+
)
|
| 355 |
+
with col2:
|
| 356 |
+
top_k_image = st.slider(
|
| 357 |
+
"Top-k Image Evidences",
|
| 358 |
+
min_value=1,
|
| 359 |
+
max_value=5,
|
| 360 |
+
value=2,
|
| 361 |
+
key="top_k_image",
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
# Generate Enriched Text button
|
| 365 |
+
if st.button("Verify Claim"):
|
| 366 |
+
if not uploaded_image and not input_text:
|
| 367 |
+
st.warning("Please upload an image or enter text.")
|
| 368 |
+
return
|
| 369 |
+
|
| 370 |
+
progress = st.progress(0)
|
| 371 |
+
|
| 372 |
+
# Step 1: Generate caption
|
| 373 |
+
progress.progress(10)
|
| 374 |
+
st.write("### Step 1: Generating caption...")
|
| 375 |
+
image_caption = ""
|
| 376 |
+
if uploaded_image:
|
| 377 |
+
image_caption = generate_caption(image)
|
| 378 |
+
st.write("**Generated Image Caption:**", image_caption)
|
| 379 |
+
|
| 380 |
+
# Step 2: Enrich text
|
| 381 |
+
progress.progress(40)
|
| 382 |
+
st.write("### Step 2: Enriching text...")
|
| 383 |
+
enriched_text = enrich_text_with_caption(input_text, image_caption)
|
| 384 |
+
st.write("**Enriched Text:**")
|
| 385 |
+
st.write(enriched_text)
|
| 386 |
+
|
| 387 |
+
# Step 3: Retrieve evidences by text
|
| 388 |
+
progress.progress(50)
|
| 389 |
+
st.write("### Step 3: Retrieving evidences by text...")
|
| 390 |
+
if input_text:
|
| 391 |
+
text_evidences = retrieve_evidences_by_text(enriched_text, top_k=top_k_text)
|
| 392 |
+
st.write(f"Retrieved {len(text_evidences)} text evidences.")
|
| 393 |
+
else:
|
| 394 |
+
text_evidences = None
|
| 395 |
+
st.write("Text modality is missing from the input claim!")
|
| 396 |
+
|
| 397 |
+
# Step 4: Retrieve evidences by image
|
| 398 |
+
progress.progress(70)
|
| 399 |
+
st.write("### Step 4: Retrieving evidences by image...")
|
| 400 |
+
if uploaded_image:
|
| 401 |
+
image_evidences = retrieve_evidences_by_image(
|
| 402 |
+
uploaded_image, top_k=top_k_image
|
| 403 |
+
)
|
| 404 |
+
st.write(f"Retrieved {len(image_evidences)} image evidences.")
|
| 405 |
+
else:
|
| 406 |
+
image_evidences = None
|
| 407 |
+
st.write("Image modality is missing from the input claim!")
|
| 408 |
+
|
| 409 |
+
# Step 5: Classify evidences
|
| 410 |
+
progress.progress(90)
|
| 411 |
+
st.write("### Step 5: Verifying claim with retrieved evidences...")
|
| 412 |
+
for evidence in (text_evidences or []) + (image_evidences or []):
|
| 413 |
+
a, b, c, d = classify_evidence(
|
| 414 |
+
claim_text=enriched_text,
|
| 415 |
+
claim_image_path=uploaded_image,
|
| 416 |
+
evidence_text=evidence.text,
|
| 417 |
+
evidence_image_path=evidence.image_path,
|
| 418 |
+
)
|
| 419 |
+
evidence.classification_result_all = a, b, c, d
|
| 420 |
+
evidence.classification_result_final = get_final_classification(
|
| 421 |
+
evidence.classification_result_all
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
# Step 6: Display evidences
|
| 425 |
+
progress.progress(100)
|
| 426 |
+
if text_evidences or image_evidences:
|
| 427 |
+
st.write("## Results")
|
| 428 |
+
tabs = st.tabs(["Text Evidences", "Image Evidences"])
|
| 429 |
+
|
| 430 |
+
with tabs[0]:
|
| 431 |
+
if text_evidences:
|
| 432 |
+
st.write("### Text Evidences")
|
| 433 |
+
display_evidence_tab(text_evidences, "text")
|
| 434 |
+
else:
|
| 435 |
+
st.write("Text modality is missing from the input claim!")
|
| 436 |
+
|
| 437 |
+
with tabs[1]:
|
| 438 |
+
if image_evidences:
|
| 439 |
+
st.write("### Image Evidences")
|
| 440 |
+
display_evidence_tab(image_evidences, "image")
|
| 441 |
+
else:
|
| 442 |
+
st.write("Image modality is missing from the input claim!")
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
if __name__ == "__main__":
|
| 446 |
+
main()
|
src/evidence/__init__.py
ADDED
|
File without changes
|
src/evidence/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (199 Bytes). View file
|
|
|
src/evidence/__pycache__/corpus_utils.cpython-311.pyc
ADDED
|
Binary file (4.06 kB). View file
|
|
|
src/evidence/__pycache__/im2im_retrieval.cpython-311.pyc
ADDED
|
Binary file (10.3 kB). View file
|
|
|
src/evidence/__pycache__/text2text_retrieval.cpython-311.pyc
ADDED
|
Binary file (10.3 kB). View file
|
|
|
src/evidence/corpus_utils.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
|
| 4 |
+
from src.utils.path_utils import get_project_root
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def separate_evidence_images(base_dir):
|
| 8 |
+
"""
|
| 9 |
+
Separates evidence images from the train directory and copies them into a new 'evidence_corpus' folder.
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
base_dir (str): The base directory containing the 'train' folder.
|
| 13 |
+
"""
|
| 14 |
+
# Define paths
|
| 15 |
+
datasets = ["train", "test"]
|
| 16 |
+
evidence_corpus_dir = os.path.join(base_dir, "evidence_corpus")
|
| 17 |
+
|
| 18 |
+
# Create the evidence_corpus directory if it doesn't exist
|
| 19 |
+
os.makedirs(evidence_corpus_dir, exist_ok=True)
|
| 20 |
+
|
| 21 |
+
# Loop through the train directory and copy evidence images
|
| 22 |
+
for dataset in datasets:
|
| 23 |
+
dataset_dir = os.path.join(base_dir, dataset)
|
| 24 |
+
for filename in os.listdir(dataset_dir):
|
| 25 |
+
if filename.split("_")[-1].split(".")[0] == "evidence":
|
| 26 |
+
new_filename = f"{dataset}_{filename}"
|
| 27 |
+
source_path = os.path.join(dataset_dir, filename)
|
| 28 |
+
target_path = os.path.join(evidence_corpus_dir, new_filename)
|
| 29 |
+
|
| 30 |
+
shutil.copy(source_path, target_path)
|
| 31 |
+
|
| 32 |
+
print("All evidence images in the train set have been copied.")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
import pickle
|
| 36 |
+
|
| 37 |
+
# File path for the evidence features pickle
|
| 38 |
+
pickle_file_path = "evidence_features.pkl"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Function to update the keys in the pickle
|
| 42 |
+
def update_pickle_keys(pickle_file_path, output_pickle_path=None):
|
| 43 |
+
# Open and load the existing pickle
|
| 44 |
+
with open(pickle_file_path, "rb") as f:
|
| 45 |
+
feature_dict = pickle.load(f)
|
| 46 |
+
|
| 47 |
+
updated_dict = {}
|
| 48 |
+
|
| 49 |
+
# Update each key
|
| 50 |
+
for old_path, features in feature_dict.items():
|
| 51 |
+
# Extract the filename (e.g., test_0_evidence.jpg)
|
| 52 |
+
filename = os.path.basename(old_path)
|
| 53 |
+
|
| 54 |
+
# Determine if it's a test or train image based on the filename
|
| 55 |
+
if filename.startswith("test"):
|
| 56 |
+
new_relative_path = os.path.join(
|
| 57 |
+
"data",
|
| 58 |
+
"raw",
|
| 59 |
+
"factify",
|
| 60 |
+
"extracted",
|
| 61 |
+
"images",
|
| 62 |
+
"test",
|
| 63 |
+
filename.split("_", 1)[1],
|
| 64 |
+
)
|
| 65 |
+
elif filename.startswith("train"):
|
| 66 |
+
new_relative_path = os.path.join(
|
| 67 |
+
"data",
|
| 68 |
+
"raw",
|
| 69 |
+
"factify",
|
| 70 |
+
"extracted",
|
| 71 |
+
"images",
|
| 72 |
+
"train",
|
| 73 |
+
filename.split("_", 1)[1],
|
| 74 |
+
)
|
| 75 |
+
else:
|
| 76 |
+
raise ValueError(f"Unexpected filename format: {filename}")
|
| 77 |
+
|
| 78 |
+
# Add the updated key and its value to the new dictionary
|
| 79 |
+
updated_dict[new_relative_path] = features
|
| 80 |
+
|
| 81 |
+
# Save the updated dictionary back to a pickle file
|
| 82 |
+
output_path = output_pickle_path if output_pickle_path else pickle_file_path
|
| 83 |
+
with open(output_path, "wb") as f:
|
| 84 |
+
pickle.dump(updated_dict, f)
|
| 85 |
+
|
| 86 |
+
print(f"Updated pickle saved at: {output_path}")
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# Example usage
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
pickle_file_path = "/evidence_features.pkl"
|
| 92 |
+
project_root = get_project_root()
|
| 93 |
+
# Run the function
|
| 94 |
+
base_dir = os.path.join(
|
| 95 |
+
project_root, "data", "raw", "factify", "extracted", "images"
|
| 96 |
+
)
|
| 97 |
+
separate_evidence_images(base_dir)
|
| 98 |
+
|
| 99 |
+
# out_pkl_path = "C:\\Users\\defne\\Desktop\\2024-2025FallSemester\\Applied NLP\\multimodal-misinformation-detection\\data\\raw\\factify\\extracted\\images"
|
| 100 |
+
# update_pickle_keys(pickle_file_path, output_pickle_path=out_pkl_path)
|
src/evidence/im2im_retrieval.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
from torchvision.models import resnet50
|
| 3 |
+
from torchvision.transforms import transforms
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch
|
| 7 |
+
import pickle
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from src.utils.path_utils import get_project_root
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ImageSimilarity:
|
| 13 |
+
def __init__(self):
|
| 14 |
+
self.model = resnet50(weights="DEFAULT")
|
| 15 |
+
self.model = nn.Sequential(
|
| 16 |
+
*list(self.model.children())[:-1]
|
| 17 |
+
) # Ignoring the last classification layer
|
| 18 |
+
self.model.eval()
|
| 19 |
+
self.transform = transforms.Compose(
|
| 20 |
+
[
|
| 21 |
+
transforms.Resize((224, 224)),
|
| 22 |
+
transforms.ToTensor(),
|
| 23 |
+
transforms.Normalize(
|
| 24 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 25 |
+
),
|
| 26 |
+
]
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
def extract_features(self, image_stream):
|
| 30 |
+
image = Image.open(image_stream).convert("RGB")
|
| 31 |
+
image = self.transform(image).unsqueeze(0)
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
features = self.model(image)
|
| 35 |
+
features = features.flatten()
|
| 36 |
+
return features
|
| 37 |
+
|
| 38 |
+
def similarity(self, features1, features2):
|
| 39 |
+
# Calculating cosine similarity
|
| 40 |
+
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
| 41 |
+
similarity = cos(features1.unsqueeze(0), features2.unsqueeze(0))
|
| 42 |
+
return similarity.item()
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class ImageCorpus:
|
| 46 |
+
def __init__(self, feature_corpus_path):
|
| 47 |
+
self.feature_corpus_path = feature_corpus_path
|
| 48 |
+
self.feature_dict = self.load_features()
|
| 49 |
+
self.feature_extractor = ImageSimilarity()
|
| 50 |
+
|
| 51 |
+
def load_features(self):
|
| 52 |
+
try:
|
| 53 |
+
with open(self.feature_corpus_path, "rb") as f:
|
| 54 |
+
return pickle.load(f)
|
| 55 |
+
except (EOFError, pickle.UnpicklingError):
|
| 56 |
+
print(
|
| 57 |
+
"Warning: Pickle file is empty or corrupted. Initializing empty feature dict."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
def save_features(self):
|
| 61 |
+
with open(self.feature_corpus_path, "wb") as f:
|
| 62 |
+
pickle.dump(self.feature_dict, f)
|
| 63 |
+
|
| 64 |
+
def add_image(self, image_path):
|
| 65 |
+
features = self.feature_extractor.extract_features(image_path)
|
| 66 |
+
self.feature_dict[image_path] = features
|
| 67 |
+
self.save_features()
|
| 68 |
+
|
| 69 |
+
def create_feature_corpus(self, image_dir):
|
| 70 |
+
for image_name in os.listdir(image_dir):
|
| 71 |
+
image_path = os.path.join(image_dir, image_name)
|
| 72 |
+
if os.path.isfile(image_path) and image_path.lower().endswith(
|
| 73 |
+
(".png", ".jpg", ".jpeg")
|
| 74 |
+
):
|
| 75 |
+
features = self.feature_extractor.extract_features(image_path)
|
| 76 |
+
self.feature_dict[image_path] = features
|
| 77 |
+
|
| 78 |
+
self.save_features()
|
| 79 |
+
|
| 80 |
+
def retrieve_similar_images(self, query_image_path, top_k=50):
|
| 81 |
+
query_features = self.feature_extractor.extract_features(query_image_path)
|
| 82 |
+
similarity_scores = {}
|
| 83 |
+
|
| 84 |
+
for image_name, corpus_feature in self.feature_dict.items():
|
| 85 |
+
similarity = self.feature_extractor.similarity(
|
| 86 |
+
query_features, corpus_feature
|
| 87 |
+
)
|
| 88 |
+
similarity_scores[image_name] = similarity
|
| 89 |
+
|
| 90 |
+
retrieved_images = sorted(
|
| 91 |
+
similarity_scores.items(), key=lambda x: x[1], reverse=True
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Filter out identical images (based on scores)
|
| 95 |
+
unique_scores = set()
|
| 96 |
+
filtered_images = []
|
| 97 |
+
|
| 98 |
+
for image_path, score in retrieved_images:
|
| 99 |
+
if score not in unique_scores: # Check if this score is already added
|
| 100 |
+
unique_scores.add(score)
|
| 101 |
+
filtered_images.append((image_path, score))
|
| 102 |
+
|
| 103 |
+
if len(filtered_images) == top_k: # Stop once we have top_k unique images
|
| 104 |
+
break
|
| 105 |
+
|
| 106 |
+
return filtered_images
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def visualize_retrieved_images(query_image_path, top_retrievals):
|
| 110 |
+
# Load query image
|
| 111 |
+
|
| 112 |
+
query_image = Image.open(query_image_path).convert("RGB")
|
| 113 |
+
project_base = get_project_root()
|
| 114 |
+
# Load retrieved images and their scores
|
| 115 |
+
retrieved_images = [
|
| 116 |
+
(Image.open(os.path.join(project_base, img_path)).convert("RGB"), score)
|
| 117 |
+
for img_path, score in top_retrievals
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
# Set up the grid for visualization
|
| 121 |
+
total_retrieved = len(retrieved_images)
|
| 122 |
+
rows = 2 + (total_retrieved - 1) // 5 # 1 row for query + rows for 5 images per row
|
| 123 |
+
cols = 5
|
| 124 |
+
|
| 125 |
+
# Set figure size
|
| 126 |
+
plt.figure(figsize=(20, rows * 4))
|
| 127 |
+
|
| 128 |
+
# Plot query image at the top row (centered in row of 5)
|
| 129 |
+
plt.subplot(rows, cols, (cols // 2) + 1) # Center in the first row
|
| 130 |
+
plt.imshow(query_image)
|
| 131 |
+
plt.title("Query Image", fontsize=12)
|
| 132 |
+
plt.axis("off")
|
| 133 |
+
|
| 134 |
+
# Plot retrieved images
|
| 135 |
+
for idx, (img, score) in enumerate(retrieved_images):
|
| 136 |
+
plt.subplot(rows, cols, cols + idx + 1) # Start plotting after the query image
|
| 137 |
+
plt.imshow(img)
|
| 138 |
+
plt.title(f"Rank: {idx+1}\nScore: {score:.4f}", fontsize=10)
|
| 139 |
+
plt.axis("off")
|
| 140 |
+
|
| 141 |
+
plt.tight_layout()
|
| 142 |
+
plt.show()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
if __name__ == "__main__":
|
| 146 |
+
project_root = get_project_root()
|
| 147 |
+
image_feature = os.path.join(project_root, "evidence_features.pkl")
|
| 148 |
+
image_dir = os.path.join(
|
| 149 |
+
project_root, "data", "raw", "factify", "extracted", "images", "evidence_corpus"
|
| 150 |
+
) # Replace with your base directory path
|
| 151 |
+
|
| 152 |
+
query_image_path = os.path.join(
|
| 153 |
+
project_root,
|
| 154 |
+
"data",
|
| 155 |
+
"raw",
|
| 156 |
+
"factify",
|
| 157 |
+
"extracted",
|
| 158 |
+
"images",
|
| 159 |
+
"train",
|
| 160 |
+
"1_claim.jpg",
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
image_corpus = ImageCorpus(image_feature)
|
| 164 |
+
# corpus = image_corpus.create_feature_corpus(image_dir)
|
| 165 |
+
print(list(image_corpus.feature_dict.keys())[0])
|
| 166 |
+
|
| 167 |
+
top_retrievals = image_corpus.retrieve_similar_images(query_image_path, top_k=5)
|
| 168 |
+
print(top_retrievals)
|
| 169 |
+
visualize_retrieved_images(query_image_path, top_retrievals)
|
src/evidence/text2text_retrieval.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import h5py
|
| 2 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
from src.utils.path_utils import get_project_root
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class SemanticSimilarity:
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
train_embeddings_file,
|
| 14 |
+
test_embeddings_file,
|
| 15 |
+
train_csv_path=None,
|
| 16 |
+
test_csv_path=None,
|
| 17 |
+
train_df=None,
|
| 18 |
+
test_df=None,
|
| 19 |
+
):
|
| 20 |
+
# We use the Bi-Encoder to encode all passages
|
| 21 |
+
self.bi_encoder = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
|
| 22 |
+
self.bi_encoder.max_seq_length = 512 # Truncate long passages to 256 tokens
|
| 23 |
+
|
| 24 |
+
self.cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
| 25 |
+
|
| 26 |
+
self.train_embeddings, self.train_ids = self._load_embeddings(
|
| 27 |
+
train_embeddings_file
|
| 28 |
+
)
|
| 29 |
+
self.test_embeddings, self.test_ids = self._load_embeddings(
|
| 30 |
+
test_embeddings_file
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Load corresponding CSV files for enriched evidence
|
| 34 |
+
self.train_csv = (
|
| 35 |
+
train_df if train_df is not None else pd.read_csv(train_csv_path)
|
| 36 |
+
)
|
| 37 |
+
self.test_csv = test_df if test_df is not None else pd.read_csv(test_csv_path)
|
| 38 |
+
|
| 39 |
+
def _load_embeddings(self, h5_file_path):
|
| 40 |
+
"""
|
| 41 |
+
Load embeddings and IDs from the HDF5 file
|
| 42 |
+
"""
|
| 43 |
+
with h5py.File(h5_file_path, "r") as h5_file:
|
| 44 |
+
embeddings = torch.tensor(h5_file["embeddings"][:], dtype=torch.float16)
|
| 45 |
+
ids = list(h5_file["ids"][:]) # Retrieve the IDs as a list of strings
|
| 46 |
+
|
| 47 |
+
return embeddings, ids
|
| 48 |
+
|
| 49 |
+
def search(self, query, top_k):
|
| 50 |
+
##### Sematic Search #####
|
| 51 |
+
# Encode the query using the bi-encoder and find potentially relevant passages
|
| 52 |
+
question_embedding = self.bi_encoder.encode(query, convert_to_tensor=True)
|
| 53 |
+
question_embedding = question_embedding.to(dtype=torch.float16)
|
| 54 |
+
# question_embedding = question_embedding
|
| 55 |
+
|
| 56 |
+
hits_train = util.semantic_search(
|
| 57 |
+
question_embedding, self.train_embeddings, top_k=top_k * 5
|
| 58 |
+
)
|
| 59 |
+
hits_train = hits_train[0] # Get the hits for the first query
|
| 60 |
+
# print(f"len(hits_train) = {len(hits_train)}")
|
| 61 |
+
hits_test = util.semantic_search(
|
| 62 |
+
question_embedding, self.test_embeddings, top_k=top_k * 5
|
| 63 |
+
)
|
| 64 |
+
hits_test = hits_test[0]
|
| 65 |
+
# print(f"len(hits_test): {len(hits_test)}")
|
| 66 |
+
|
| 67 |
+
##### Re-Ranking #####
|
| 68 |
+
# Now, score all retrieved passages with the cross_encoder
|
| 69 |
+
cross_inp_train = [
|
| 70 |
+
[query, self.train_csv["evidence_enriched"][hit["corpus_id"]]]
|
| 71 |
+
for hit in hits_train
|
| 72 |
+
]
|
| 73 |
+
cross_scores_train = self.cross_encoder.predict(cross_inp_train)
|
| 74 |
+
|
| 75 |
+
cross_inp_test = [
|
| 76 |
+
[query, self.test_csv["evidence_enriched"][hit["corpus_id"]]]
|
| 77 |
+
for hit in hits_test
|
| 78 |
+
]
|
| 79 |
+
cross_scores_test = self.cross_encoder.predict(cross_inp_test)
|
| 80 |
+
|
| 81 |
+
# Sort results by the cross-encoder scores
|
| 82 |
+
for idx in range(len(cross_scores_train)):
|
| 83 |
+
hits_train[idx]["cross-score"] = cross_scores_train[idx]
|
| 84 |
+
|
| 85 |
+
for idx in range(len(cross_scores_test)):
|
| 86 |
+
hits_test[idx]["cross-score"] = cross_scores_test[idx]
|
| 87 |
+
|
| 88 |
+
hits_train_cross_encoder = sorted(
|
| 89 |
+
hits_train, key=lambda x: x.get("cross-score"), reverse=True
|
| 90 |
+
)
|
| 91 |
+
hits_train_cross_encoder = hits_train_cross_encoder[: top_k * 5]
|
| 92 |
+
hits_test_cross_encoder = sorted(
|
| 93 |
+
hits_test, key=lambda x: x.get("cross-score"), reverse=True
|
| 94 |
+
)
|
| 95 |
+
hits_test_cross_encoder = hits_test_cross_encoder[: top_k * 5]
|
| 96 |
+
|
| 97 |
+
results = [
|
| 98 |
+
(self.train_ids[hit["corpus_id"]].decode("utf-8"), hit.get("cross-score"))
|
| 99 |
+
for hit in hits_train_cross_encoder
|
| 100 |
+
] + [
|
| 101 |
+
(self.test_ids[hit["corpus_id"]].decode("utf-8"), hit.get("cross-score"))
|
| 102 |
+
for hit in hits_test_cross_encoder
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
##### Filter out duplicates based on scores #####
|
| 106 |
+
unique_scores = set()
|
| 107 |
+
filtered_results = []
|
| 108 |
+
|
| 109 |
+
# print(results)
|
| 110 |
+
for id_, score in sorted(results, key=lambda x: x[1], reverse=True):
|
| 111 |
+
if score not in unique_scores:
|
| 112 |
+
unique_scores.add(score)
|
| 113 |
+
filtered_results.append((id_, score))
|
| 114 |
+
|
| 115 |
+
if (
|
| 116 |
+
len(filtered_results) == top_k
|
| 117 |
+
): # Stop when top_k unique scores are reached
|
| 118 |
+
break
|
| 119 |
+
|
| 120 |
+
return filtered_results
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class TextCorpus:
|
| 124 |
+
def __init__(self, data_dir, split):
|
| 125 |
+
self.bi_encoder = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
|
| 126 |
+
self.split = split # train evidences or test evidences
|
| 127 |
+
self.data_dir = data_dir # .csv file for enriched train and test is contained.
|
| 128 |
+
|
| 129 |
+
def encode_corpus(self):
|
| 130 |
+
"""
|
| 131 |
+
Encode the corpus (evidence_enriched column for both train and test) and store the embeddings.
|
| 132 |
+
"""
|
| 133 |
+
file_path = os.path.join(self.data_dir, f"{self.split}_enriched.csv")
|
| 134 |
+
df = pd.read_csv(file_path)
|
| 135 |
+
|
| 136 |
+
# Extract the enriched evidence column and ids
|
| 137 |
+
evidence_enriched = df["evidence_enriched"].tolist()
|
| 138 |
+
ids = df["id"].tolist() # Assuming the 'id' column is in the CSV
|
| 139 |
+
|
| 140 |
+
# Encode the evidence using the bi-encoder
|
| 141 |
+
embeddings = self.bi_encoder.encode(evidence_enriched, convert_to_tensor=True)
|
| 142 |
+
|
| 143 |
+
# Define HDF5 file path
|
| 144 |
+
h5_file_path = os.path.join(get_project_root(), f"{self.split}_embeddings.h5")
|
| 145 |
+
|
| 146 |
+
with h5py.File(h5_file_path, "w") as h5_file:
|
| 147 |
+
h5_file.create_dataset(
|
| 148 |
+
"embeddings", data=embeddings.numpy(), dtype="float16"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
h5_file.create_dataset(
|
| 152 |
+
"ids",
|
| 153 |
+
data=[f"{self.split}_{id}" for id in ids],
|
| 154 |
+
dtype=h5py.string_dtype(),
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
print(f"Embeddings saved to {h5_file_path}")
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
if __name__ == "__main__":
|
| 161 |
+
import time
|
| 162 |
+
|
| 163 |
+
start_time = time.time()
|
| 164 |
+
project_root = get_project_root()
|
| 165 |
+
data_dir = os.path.join(project_root, "data", "preprocessed")
|
| 166 |
+
|
| 167 |
+
# query = train_enriched['evidence_enriched'][0]
|
| 168 |
+
# train_embeddings = os.path.join(get_project_root(), 'train_evidence_embeddings.pkl')
|
| 169 |
+
# test_embeddings = os.path.join(get_project_root(), 'test_evidence_embeddings.pkl')
|
| 170 |
+
|
| 171 |
+
# semantic = SemanticSimilarity(train_embeddings, test_embeddings)
|
| 172 |
+
# semantic.search(query, top_k=10)
|
| 173 |
+
|
| 174 |
+
# evidence = TextCorpus(data_dir, 'train')
|
| 175 |
+
|
| 176 |
+
# Define file paths
|
| 177 |
+
train_csv_path = os.path.join(data_dir, "train_enriched.csv")
|
| 178 |
+
test_csv_path = os.path.join(data_dir, "test_enriched.csv")
|
| 179 |
+
train_embeddings_file = os.path.join(project_root, "train_embeddings.h5")
|
| 180 |
+
test_embeddings_file = os.path.join(project_root, "test_embeddings.h5")
|
| 181 |
+
|
| 182 |
+
# Initialize the SemanticSimilarity class
|
| 183 |
+
similarity = SemanticSimilarity(
|
| 184 |
+
train_embeddings_file=train_embeddings_file,
|
| 185 |
+
test_embeddings_file=test_embeddings_file,
|
| 186 |
+
train_csv_path=train_csv_path,
|
| 187 |
+
test_csv_path=test_csv_path,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Load the first query from train_enriched.csv
|
| 191 |
+
train_df = pd.read_csv(train_csv_path)
|
| 192 |
+
first_query = train_df["claim_enriched"].iloc[2] # Get the first query
|
| 193 |
+
|
| 194 |
+
# Define the number of top-k results to retrieve
|
| 195 |
+
top_k = 5
|
| 196 |
+
|
| 197 |
+
# Perform the semantic search
|
| 198 |
+
results = similarity.search(query=first_query, top_k=top_k)
|
| 199 |
+
finish_time = time.time() - start_time
|
| 200 |
+
# Display the results
|
| 201 |
+
|
| 202 |
+
print(results)
|
| 203 |
+
print(f"Finish time: {finish_time}")
|
src/experimental/__init__.py
ADDED
|
File without changes
|
src/experimental/dataset_search.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/experimental/dataset_stats.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/experimental/image_captioning.ipynb
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"id": "initial_id",
|
| 6 |
+
"metadata": {
|
| 7 |
+
"collapsed": true,
|
| 8 |
+
"ExecuteTime": {
|
| 9 |
+
"end_time": "2024-12-14T14:40:23.089485Z",
|
| 10 |
+
"start_time": "2024-12-14T14:40:22.937392Z"
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"source": [
|
| 14 |
+
"import pandas as pd\n",
|
| 15 |
+
"from src.utils.path_utils import get_project_root\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"PROJECT_ROOT = get_project_root()"
|
| 18 |
+
],
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"execution_count": 1
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"metadata": {
|
| 24 |
+
"ExecuteTime": {
|
| 25 |
+
"end_time": "2024-12-14T14:46:49.718444Z",
|
| 26 |
+
"start_time": "2024-12-14T14:46:46.361765Z"
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"source": [
|
| 31 |
+
"import requests\n",
|
| 32 |
+
"from PIL import Image\n",
|
| 33 |
+
"from transformers import BlipProcessor, BlipForConditionalGeneration\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"processor = BlipProcessor.from_pretrained(\"Salesforce/blip-image-captioning-large\")\n",
|
| 36 |
+
"model = BlipForConditionalGeneration.from_pretrained(\"Salesforce/blip-image-captioning-large\")\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"image = Image.open(f\"{PROJECT_ROOT}/data/scenery_image.jpg\")\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"# conditional image captioning\n",
|
| 41 |
+
"text = \"a photography of\"\n",
|
| 42 |
+
"inputs = processor(image, text, return_tensors=\"pt\")\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"out = model.generate(**inputs)\n",
|
| 45 |
+
"print(processor.decode(out[0], skip_special_tokens=True))\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"# unconditional image captioning\n",
|
| 48 |
+
"inputs = processor(image, return_tensors=\"pt\")\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"out = model.generate(**inputs)\n",
|
| 51 |
+
"print(processor.decode(out[0], skip_special_tokens=True))\n"
|
| 52 |
+
],
|
| 53 |
+
"id": "80b41a616dbbafd3",
|
| 54 |
+
"outputs": [
|
| 55 |
+
{
|
| 56 |
+
"name": "stdout",
|
| 57 |
+
"output_type": "stream",
|
| 58 |
+
"text": [
|
| 59 |
+
"a photography of a road leading to mountains with a sunset in the background\n",
|
| 60 |
+
"arafed road with mountains in the background and a sunset\n"
|
| 61 |
+
]
|
| 62 |
+
}
|
| 63 |
+
],
|
| 64 |
+
"execution_count": 8
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"execution_count": null,
|
| 71 |
+
"source": "",
|
| 72 |
+
"id": "983b19a8aa6e4a39"
|
| 73 |
+
}
|
| 74 |
+
],
|
| 75 |
+
"metadata": {
|
| 76 |
+
"kernelspec": {
|
| 77 |
+
"display_name": "Python 3",
|
| 78 |
+
"language": "python",
|
| 79 |
+
"name": "python3"
|
| 80 |
+
},
|
| 81 |
+
"language_info": {
|
| 82 |
+
"codemirror_mode": {
|
| 83 |
+
"name": "ipython",
|
| 84 |
+
"version": 2
|
| 85 |
+
},
|
| 86 |
+
"file_extension": ".py",
|
| 87 |
+
"mimetype": "text/x-python",
|
| 88 |
+
"name": "python",
|
| 89 |
+
"nbconvert_exporter": "python",
|
| 90 |
+
"pygments_lexer": "ipython2",
|
| 91 |
+
"version": "2.7.6"
|
| 92 |
+
}
|
| 93 |
+
},
|
| 94 |
+
"nbformat": 4,
|
| 95 |
+
"nbformat_minor": 5
|
| 96 |
+
}
|
src/model/__init__.py
ADDED
|
File without changes
|
src/model/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (197 Bytes). View file
|
|
|
src/model/__pycache__/layers.cpython-311.pyc
ADDED
|
Binary file (4.08 kB). View file
|
|
|
src/model/__pycache__/model.cpython-311.pyc
ADDED
|
Binary file (19.7 kB). View file
|
|
|
src/model/dataset.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import h5py
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
import logging
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
# Define preprocessing transformations
|
| 14 |
+
preprocess = transforms.Compose([
|
| 15 |
+
transforms.Resize(256),
|
| 16 |
+
transforms.CenterCrop(256),
|
| 17 |
+
transforms.ToTensor(),
|
| 18 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.229, 0.224, 0.225]),
|
| 19 |
+
])
|
| 20 |
+
|
| 21 |
+
# Updated category mapping for multi-label classification
|
| 22 |
+
# Each category maps to (text-text, text-image, image-text, image-image) labels
|
| 23 |
+
# 0: Support, 1: NEI (Not Enough Information), 2: Refute
|
| 24 |
+
category_to_labels = {
|
| 25 |
+
'Support_Text': [0, 1, 1, 1], # Support only for text-text
|
| 26 |
+
'Support_Multimodal': [0, 0, 0, 0], # Support for all paths
|
| 27 |
+
'Insufficient_Text': [1, 1, 1, 1], # NEI for all paths
|
| 28 |
+
'Insufficient_Multimodal': [1, 1, 1, 0], # Support for cross-modal paths, NEI for others
|
| 29 |
+
'Refute': [2, 2, 2, 2] # Refute for all paths
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def prepare_h5_dataset(csv_path, h5_path):
|
| 33 |
+
"""
|
| 34 |
+
Prepare h5 dataset from CSV file where each index contains complete sample data
|
| 35 |
+
"""
|
| 36 |
+
# Create output directory if it doesn't exist
|
| 37 |
+
os.makedirs(os.path.dirname(h5_path), exist_ok=True)
|
| 38 |
+
|
| 39 |
+
# Read CSV file
|
| 40 |
+
df = pd.read_csv(csv_path, index_col=0)[['claim', 'claim_image', 'evidence', 'evidence_image', 'category']]
|
| 41 |
+
|
| 42 |
+
with h5py.File(h5_path, 'w') as f:
|
| 43 |
+
# Process each row
|
| 44 |
+
for idx, (_, row) in enumerate(df.iterrows()):
|
| 45 |
+
# Create group for this sample
|
| 46 |
+
sample_group = f.create_group(str(idx))
|
| 47 |
+
|
| 48 |
+
# Store text data
|
| 49 |
+
sample_group.create_dataset('claim', data=row['claim'])
|
| 50 |
+
sample_group.create_dataset('document', data=row['evidence'])
|
| 51 |
+
|
| 52 |
+
# Process and store images
|
| 53 |
+
try:
|
| 54 |
+
claim_img = Image.open(row['claim_image']).convert('RGB')
|
| 55 |
+
claim_img_tensor = preprocess(claim_img).numpy()
|
| 56 |
+
except Exception as e:
|
| 57 |
+
logger.warning(f"Error processing claim image for idx {idx}: {e}")
|
| 58 |
+
claim_img_tensor = np.zeros((3, 256, 256), dtype='float32')
|
| 59 |
+
sample_group.create_dataset('claim_image', data=claim_img_tensor)
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
doc_img = Image.open(row['evidence_image']).convert('RGB')
|
| 63 |
+
doc_img_tensor = preprocess(doc_img).numpy()
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.warning(f"Error processing evidence image for idx {idx}: {e}")
|
| 66 |
+
doc_img_tensor = np.zeros((3, 256, 256), dtype='float32')
|
| 67 |
+
sample_group.create_dataset('document_image', data=doc_img_tensor)
|
| 68 |
+
|
| 69 |
+
# Store multi-path labels
|
| 70 |
+
labels = category_to_labels.get(row['category'], [1, 1, 1, 1]) # Default to NEI if category not found
|
| 71 |
+
sample_group.create_dataset('labels', data=np.array(labels, dtype=np.int64))
|
| 72 |
+
|
| 73 |
+
logger.info(f"Created H5 dataset at {h5_path}")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class MisinformationDataset(Dataset):
|
| 77 |
+
def __init__(self, csv_path, pre_embed=False):
|
| 78 |
+
self.csv_path = csv_path
|
| 79 |
+
self.pre_embed = pre_embed
|
| 80 |
+
|
| 81 |
+
# Derive h5 path from csv path
|
| 82 |
+
base_path = os.path.splitext(csv_path)[0]
|
| 83 |
+
self.h5_path = base_path + '_embeddings.h5' if pre_embed else base_path + '.h5'
|
| 84 |
+
|
| 85 |
+
if not os.path.exists(self.h5_path):
|
| 86 |
+
if pre_embed:
|
| 87 |
+
raise FileNotFoundError(f"Pre-computed embeddings not found at {self.h5_path}. "
|
| 88 |
+
f"Please run preprocess_embeddings.py first.")
|
| 89 |
+
logger.info(f"H5 file not found at {self.h5_path}. Creating new H5 dataset...")
|
| 90 |
+
prepare_h5_dataset(self.csv_path, self.h5_path)
|
| 91 |
+
|
| 92 |
+
self.h5_file = h5py.File(self.h5_path, 'r')
|
| 93 |
+
self.length = len(self.h5_file.keys())
|
| 94 |
+
|
| 95 |
+
def __len__(self):
|
| 96 |
+
return self.length
|
| 97 |
+
|
| 98 |
+
def __getitem__(self, idx):
|
| 99 |
+
sample = self.h5_file[str(idx)]
|
| 100 |
+
|
| 101 |
+
if self.pre_embed:
|
| 102 |
+
return {
|
| 103 |
+
'id': str(idx),
|
| 104 |
+
'claim_text_embeds': torch.from_numpy(sample['claim_text_embeds'][()]),
|
| 105 |
+
'doc_text_embeds': torch.from_numpy(sample['doc_text_embeds'][()]),
|
| 106 |
+
'claim_image_embeds': torch.from_numpy(sample['claim_image_embeds'][()]),
|
| 107 |
+
'doc_image_embeds': torch.from_numpy(sample['doc_image_embeds'][()]),
|
| 108 |
+
'labels': torch.from_numpy(sample['labels'][()])
|
| 109 |
+
}
|
| 110 |
+
else:
|
| 111 |
+
return {
|
| 112 |
+
'id': str(idx),
|
| 113 |
+
'claim': sample['claim'][()].decode(),
|
| 114 |
+
'claim_image': torch.from_numpy(sample['claim_image'][()]),
|
| 115 |
+
'document': sample['document'][()].decode(),
|
| 116 |
+
'document_image': torch.from_numpy(sample['document_image'][()]),
|
| 117 |
+
'labels': torch.from_numpy(sample['labels'][()])
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
def __del__(self):
|
| 121 |
+
if hasattr(self, 'h5_file'):
|
| 122 |
+
self.h5_file.close()
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def get_dataloader(csv_path, batch_size=32, num_workers=4, shuffle=False, pre_embed=False):
|
| 126 |
+
dataset = MisinformationDataset(csv_path, pre_embed=pre_embed)
|
| 127 |
+
|
| 128 |
+
dataloader = DataLoader(
|
| 129 |
+
dataset,
|
| 130 |
+
batch_size=batch_size,
|
| 131 |
+
shuffle=shuffle,
|
| 132 |
+
num_workers=num_workers,
|
| 133 |
+
pin_memory=True
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
return dataloader
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
if __name__ == "__main__":
|
| 140 |
+
# Set up logging
|
| 141 |
+
logging.basicConfig(level=logging.INFO)
|
| 142 |
+
|
| 143 |
+
# Create dataloaders
|
| 144 |
+
train_loader = get_dataloader('data/preprocessed/train.csv', shuffle=True)
|
| 145 |
+
#test_loader = get_dataloader('data/preprocessed/test.csv', shuffle=False)
|
| 146 |
+
|
| 147 |
+
# Test dataloaders
|
| 148 |
+
for batch in train_loader:
|
| 149 |
+
print("Train batch:")
|
| 150 |
+
print(f"Batch size: {len(batch['id'])}")
|
| 151 |
+
print(f"Claim shape: {batch['claim_image'].shape}")
|
| 152 |
+
print(f"Document image shape: {batch['document_image'].shape}")
|
| 153 |
+
print(f"Labels shape: {batch['labels'].shape}") # Should be (batch_size, 4)
|
| 154 |
+
print(f"Sample labels: {batch['labels'][0]}") # Show labels for first item
|
| 155 |
+
break
|
| 156 |
+
|
| 157 |
+
#for batch in test_loader:
|
| 158 |
+
# print("\nTest batch:")
|
| 159 |
+
# print(f"Batch size: {len(batch['id'])}")
|
| 160 |
+
# print(f"Claim shape: {batch['claim_image'].shape}")
|
| 161 |
+
# print(f"Document image shape: {batch['document_image'].shape}")
|
| 162 |
+
# print(f"Labels shape: {batch['labels'].shape}")
|
| 163 |
+
# print(f"Sample labels: {batch['labels'][0]}")
|
| 164 |
+
# break
|
src/model/layers.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class MLP(nn.Module):
|
| 6 |
+
"""
|
| 7 |
+
MLP block with GELU activation and dropout.
|
| 8 |
+
"""
|
| 9 |
+
def __init__(self, embed_dim, mlp_ratio=4.0, dropout=0.1):
|
| 10 |
+
super().__init__()
|
| 11 |
+
hidden_dim = int(embed_dim * mlp_ratio)
|
| 12 |
+
self.net = nn.Sequential(
|
| 13 |
+
nn.Linear(embed_dim, hidden_dim),
|
| 14 |
+
nn.GELU(),
|
| 15 |
+
nn.Dropout(dropout),
|
| 16 |
+
nn.Linear(hidden_dim, embed_dim),
|
| 17 |
+
nn.Dropout(dropout)
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def forward(self, x):
|
| 21 |
+
return self.net(x)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class MultiHeadAttention(nn.Module):
|
| 25 |
+
"""
|
| 26 |
+
Multi-head attention module with optional fused attention support.
|
| 27 |
+
"""
|
| 28 |
+
def __init__(self, embed_dim, num_heads, dropout=0.1, fused_attn=False):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.embed_dim = embed_dim
|
| 31 |
+
self.num_heads = num_heads
|
| 32 |
+
self.dropout = dropout
|
| 33 |
+
self.fused_attn = fused_attn
|
| 34 |
+
self.attn_dropout = nn.Dropout(dropout)
|
| 35 |
+
|
| 36 |
+
def forward(self, Q, K, V, out_proj):
|
| 37 |
+
B, T, D = Q.shape
|
| 38 |
+
head_dim = D // self.num_heads
|
| 39 |
+
|
| 40 |
+
Q_ = Q.view(B, T, self.num_heads, head_dim).transpose(1, 2) # (B, num_heads, T, head_dim)
|
| 41 |
+
K_ = K.view(B, -1, self.num_heads, head_dim).transpose(1, 2)
|
| 42 |
+
V_ = V.view(B, -1, self.num_heads, head_dim).transpose(1, 2)
|
| 43 |
+
|
| 44 |
+
if self.fused_attn:
|
| 45 |
+
context = F.scaled_dot_product_attention(
|
| 46 |
+
Q_, K_, V_,
|
| 47 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 48 |
+
is_causal=False
|
| 49 |
+
)
|
| 50 |
+
else:
|
| 51 |
+
scores = torch.matmul(Q_, K_.transpose(-1, -2)) / (head_dim ** 0.5)
|
| 52 |
+
attn_weights = F.softmax(scores, dim=-1)
|
| 53 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 54 |
+
context = torch.matmul(attn_weights, V_) # (B, num_heads, T, head_dim)
|
| 55 |
+
|
| 56 |
+
context = context.transpose(1, 2).contiguous().view(B, T, D)
|
| 57 |
+
out = out_proj(context)
|
| 58 |
+
return out
|
src/model/model.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from .layers import MLP, MultiHeadAttention
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class MultiViewClaimRepresentation(nn.Module):
|
| 7 |
+
"""
|
| 8 |
+
Multi-view claim representation module with transformer-like architecture
|
| 9 |
+
for self-attention and cross-attention in text and image modalities.
|
| 10 |
+
"""
|
| 11 |
+
def __init__(self, text_input_dim=384, image_input_dim=1024, embed_dim=512, num_heads=8, dropout=0.1, mlp_ratio=4.0, fused_attn=False):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.text_input_dim = text_input_dim
|
| 14 |
+
self.image_input_dim = image_input_dim
|
| 15 |
+
self.embed_dim = embed_dim
|
| 16 |
+
self.num_heads = num_heads
|
| 17 |
+
self.dropout = dropout
|
| 18 |
+
|
| 19 |
+
self.text_proj = nn.Linear(text_input_dim, embed_dim)
|
| 20 |
+
self.image_proj = nn.Linear(image_input_dim, embed_dim)
|
| 21 |
+
|
| 22 |
+
# Text projections for attention
|
| 23 |
+
self.text_WQ = nn.Linear(embed_dim, embed_dim)
|
| 24 |
+
self.text_WK = nn.Linear(embed_dim, embed_dim)
|
| 25 |
+
self.text_WV = nn.Linear(embed_dim, embed_dim)
|
| 26 |
+
|
| 27 |
+
# Image projections for attention
|
| 28 |
+
self.image_WQ = nn.Linear(embed_dim, embed_dim)
|
| 29 |
+
self.image_WK = nn.Linear(embed_dim, embed_dim)
|
| 30 |
+
self.image_WV = nn.Linear(embed_dim, embed_dim)
|
| 31 |
+
|
| 32 |
+
# Output projections
|
| 33 |
+
self.text_self_attn_out = nn.Linear(embed_dim, embed_dim)
|
| 34 |
+
self.image_self_attn_out = nn.Linear(embed_dim, embed_dim)
|
| 35 |
+
self.text_cross_attn_out = nn.Linear(embed_dim, embed_dim)
|
| 36 |
+
self.image_cross_attn_out = nn.Linear(embed_dim, embed_dim)
|
| 37 |
+
|
| 38 |
+
# Layer norms
|
| 39 |
+
self.text_self_ln1 = nn.LayerNorm(embed_dim)
|
| 40 |
+
self.text_self_ln2 = nn.LayerNorm(embed_dim)
|
| 41 |
+
self.image_self_ln1 = nn.LayerNorm(embed_dim)
|
| 42 |
+
self.image_self_ln2 = nn.LayerNorm(embed_dim)
|
| 43 |
+
self.text_cross_ln1 = nn.LayerNorm(embed_dim)
|
| 44 |
+
self.text_cross_ln2 = nn.LayerNorm(embed_dim)
|
| 45 |
+
self.image_cross_ln1 = nn.LayerNorm(embed_dim)
|
| 46 |
+
self.image_cross_ln2 = nn.LayerNorm(embed_dim)
|
| 47 |
+
|
| 48 |
+
# MLPs
|
| 49 |
+
self.text_mlp = MLP(embed_dim, mlp_ratio, dropout)
|
| 50 |
+
self.image_mlp = MLP(embed_dim, mlp_ratio, dropout)
|
| 51 |
+
|
| 52 |
+
# Multi-head attention
|
| 53 |
+
self.attention = MultiHeadAttention(embed_dim, num_heads, dropout, fused_attn)
|
| 54 |
+
self.proj_dropout = nn.Dropout(dropout)
|
| 55 |
+
|
| 56 |
+
def forward(self, X_t=None, X_i=None):
|
| 57 |
+
"""
|
| 58 |
+
Args:
|
| 59 |
+
X_t (Tensor): Text embeddings of shape (B, L_t, D)
|
| 60 |
+
X_i (Tensor): Image embeddings of shape (B, L_i, D)
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
(H_t_fused, H_i_fused):
|
| 64 |
+
H_t_fused: Text representations with self- and co-attention
|
| 65 |
+
H_i_fused: Image representations with self- and co-attention
|
| 66 |
+
"""
|
| 67 |
+
# Project inputs to embedding dimension first
|
| 68 |
+
if X_t is not None:
|
| 69 |
+
X_t = self.text_proj(X_t)
|
| 70 |
+
if X_i is not None:
|
| 71 |
+
X_i = self.image_proj(X_i)
|
| 72 |
+
|
| 73 |
+
# Pre-compute Q,K,V for both modalities if present
|
| 74 |
+
text_Q = self.text_WQ(X_t) if X_t is not None else None
|
| 75 |
+
text_K = self.text_WK(X_t) if X_t is not None else None
|
| 76 |
+
text_V = self.text_WV(X_t) if X_t is not None else None
|
| 77 |
+
|
| 78 |
+
image_Q = self.image_WQ(X_i) if X_i is not None else None
|
| 79 |
+
image_K = self.image_WK(X_i) if X_i is not None else None
|
| 80 |
+
image_V = self.image_WV(X_i) if X_i is not None else None
|
| 81 |
+
|
| 82 |
+
# Unimodal text case
|
| 83 |
+
if X_t is not None and X_i is None:
|
| 84 |
+
# Self attention without MLP
|
| 85 |
+
H_t = X_t + self.attention(text_Q, text_K, text_V, self.text_self_attn_out)
|
| 86 |
+
H_t = self.text_self_ln1(H_t)
|
| 87 |
+
# Apply MLP after self attention
|
| 88 |
+
H_t = H_t + self.text_mlp(H_t)
|
| 89 |
+
H_t = self.text_self_ln2(H_t)
|
| 90 |
+
return H_t, None
|
| 91 |
+
|
| 92 |
+
# Unimodal image case
|
| 93 |
+
if X_i is not None and X_t is None:
|
| 94 |
+
# Self attention without MLP
|
| 95 |
+
H_i = X_i + self.attention(image_Q, image_K, image_V, self.image_self_attn_out)
|
| 96 |
+
H_i = self.image_self_ln1(H_i)
|
| 97 |
+
# Apply MLP after self attention
|
| 98 |
+
H_i = H_i + self.image_mlp(H_i)
|
| 99 |
+
H_i = self.image_self_ln2(H_i)
|
| 100 |
+
return None, H_i
|
| 101 |
+
|
| 102 |
+
# Multimodal case
|
| 103 |
+
# Text processing
|
| 104 |
+
H_t = X_t + self.attention(text_Q, text_K, text_V, self.text_self_attn_out) # Self attention
|
| 105 |
+
H_t = self.text_self_ln1(H_t)
|
| 106 |
+
C_t = H_t + self.attention(H_t, text_K, text_V, self.text_cross_attn_out) # Cross attention
|
| 107 |
+
C_t = self.text_cross_ln1(C_t)
|
| 108 |
+
# Apply MLP after combined attention
|
| 109 |
+
C_t = C_t + self.text_mlp(C_t)
|
| 110 |
+
C_t = self.text_cross_ln2(C_t)
|
| 111 |
+
|
| 112 |
+
# Image processing
|
| 113 |
+
H_i = X_i + self.attention(image_Q, image_K, image_V, self.image_self_attn_out) # Self attention
|
| 114 |
+
H_i = self.image_self_ln1(H_i)
|
| 115 |
+
C_i = H_i + self.attention(H_i, image_K, image_V, self.image_cross_attn_out) # Cross attention
|
| 116 |
+
C_i = self.image_cross_ln1(C_i)
|
| 117 |
+
# Apply MLP after combined attention
|
| 118 |
+
C_i = C_i + self.image_mlp(C_i)
|
| 119 |
+
C_i = self.image_cross_ln2(C_i)
|
| 120 |
+
|
| 121 |
+
return C_t, C_i
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class CrossAttentionEvidenceConditioning(nn.Module):
|
| 125 |
+
"""
|
| 126 |
+
Cross-attention module to condition claim representations
|
| 127 |
+
on textual and visual evidence.
|
| 128 |
+
"""
|
| 129 |
+
def __init__(self, text_input_dim=384, image_input_dim=1024, embed_dim=768, num_heads=8, dropout=0.1, mlp_ratio=4.0, fused_attn=False):
|
| 130 |
+
super().__init__()
|
| 131 |
+
self.num_heads = num_heads
|
| 132 |
+
self.embed_dim = embed_dim
|
| 133 |
+
self.dropout = dropout
|
| 134 |
+
self.fused_attn = fused_attn
|
| 135 |
+
|
| 136 |
+
# Query projections
|
| 137 |
+
self.text_WQ = nn.Linear(embed_dim, embed_dim)
|
| 138 |
+
self.image_WQ = nn.Linear(embed_dim, embed_dim)
|
| 139 |
+
|
| 140 |
+
# Text evidence projections
|
| 141 |
+
self.text_evidence_key = nn.Linear(text_input_dim, embed_dim)
|
| 142 |
+
self.text_evidence_value = nn.Linear(text_input_dim, embed_dim)
|
| 143 |
+
|
| 144 |
+
# Image evidence projections
|
| 145 |
+
self.image_evidence_key = nn.Linear(image_input_dim, embed_dim)
|
| 146 |
+
self.image_evidence_value = nn.Linear(image_input_dim, embed_dim)
|
| 147 |
+
|
| 148 |
+
# Separate output projections for each attention path
|
| 149 |
+
self.text_text_out = nn.Linear(embed_dim, embed_dim)
|
| 150 |
+
self.text_image_out = nn.Linear(embed_dim, embed_dim)
|
| 151 |
+
self.image_text_out = nn.Linear(embed_dim, embed_dim)
|
| 152 |
+
self.image_image_out = nn.Linear(embed_dim, embed_dim)
|
| 153 |
+
|
| 154 |
+
# Separate layer norms for each attention path
|
| 155 |
+
self.text_text_ln1 = nn.LayerNorm(embed_dim)
|
| 156 |
+
self.text_text_ln2 = nn.LayerNorm(embed_dim)
|
| 157 |
+
self.text_image_ln1 = nn.LayerNorm(embed_dim)
|
| 158 |
+
self.text_image_ln2 = nn.LayerNorm(embed_dim)
|
| 159 |
+
self.image_text_ln1 = nn.LayerNorm(embed_dim)
|
| 160 |
+
self.image_text_ln2 = nn.LayerNorm(embed_dim)
|
| 161 |
+
self.image_image_ln1 = nn.LayerNorm(embed_dim)
|
| 162 |
+
self.image_image_ln2 = nn.LayerNorm(embed_dim)
|
| 163 |
+
|
| 164 |
+
# MLPs
|
| 165 |
+
self.text_mlp = MLP(embed_dim, mlp_ratio, dropout)
|
| 166 |
+
self.image_mlp = MLP(embed_dim, mlp_ratio, dropout)
|
| 167 |
+
|
| 168 |
+
# Multi-head attention
|
| 169 |
+
self.attention = MultiHeadAttention(embed_dim, num_heads, dropout, fused_attn)
|
| 170 |
+
self.proj_dropout = nn.Dropout(dropout)
|
| 171 |
+
|
| 172 |
+
def forward(self, H_t=None, H_i=None, E_t=None, E_i=None):
|
| 173 |
+
"""
|
| 174 |
+
Returns:
|
| 175 |
+
(S_t, S_i): Each contains a tuple of (text_evidence_output, image_evidence_output)
|
| 176 |
+
"""
|
| 177 |
+
S_t_t, S_t_i = None, None
|
| 178 |
+
S_i_t, S_i_i = None, None
|
| 179 |
+
|
| 180 |
+
if H_t is not None:
|
| 181 |
+
# Text-to-text evidence attention
|
| 182 |
+
S_t_t = self.attention(
|
| 183 |
+
Q=self.text_WQ(H_t),
|
| 184 |
+
K=self.text_evidence_key(E_t),
|
| 185 |
+
V=self.text_evidence_value(E_t),
|
| 186 |
+
out_proj=self.text_text_out
|
| 187 |
+
)
|
| 188 |
+
S_t_t = H_t + S_t_t
|
| 189 |
+
S_t_t = self.text_text_ln1(S_t_t)
|
| 190 |
+
S_t_t = S_t_t + self.text_mlp(S_t_t)
|
| 191 |
+
S_t_t = self.text_text_ln2(S_t_t)
|
| 192 |
+
|
| 193 |
+
# Text-to-image evidence attention
|
| 194 |
+
S_t_i = self.attention(
|
| 195 |
+
Q=self.text_WQ(H_t),
|
| 196 |
+
K=self.image_evidence_key(E_i),
|
| 197 |
+
V=self.image_evidence_value(E_i),
|
| 198 |
+
out_proj=self.text_image_out
|
| 199 |
+
)
|
| 200 |
+
S_t_i = H_t + S_t_i
|
| 201 |
+
S_t_i = self.text_image_ln1(S_t_i)
|
| 202 |
+
S_t_i = S_t_i + self.text_mlp(S_t_i)
|
| 203 |
+
S_t_i = self.text_image_ln2(S_t_i)
|
| 204 |
+
|
| 205 |
+
if H_i is not None:
|
| 206 |
+
# Image-to-text evidence attention
|
| 207 |
+
S_i_t = self.attention(
|
| 208 |
+
Q=self.image_WQ(H_i),
|
| 209 |
+
K=self.text_evidence_key(E_t),
|
| 210 |
+
V=self.text_evidence_value(E_t),
|
| 211 |
+
out_proj=self.image_text_out
|
| 212 |
+
)
|
| 213 |
+
S_i_t = H_i + S_i_t
|
| 214 |
+
S_i_t = self.image_text_ln1(S_i_t)
|
| 215 |
+
S_i_t = S_i_t + self.image_mlp(S_i_t)
|
| 216 |
+
S_i_t = self.image_text_ln2(S_i_t)
|
| 217 |
+
|
| 218 |
+
# Image-to-image evidence attention
|
| 219 |
+
S_i_i = self.attention(
|
| 220 |
+
Q=self.image_WQ(H_i),
|
| 221 |
+
K=self.image_evidence_key(E_i),
|
| 222 |
+
V=self.image_evidence_value(E_i),
|
| 223 |
+
out_proj=self.image_image_out
|
| 224 |
+
)
|
| 225 |
+
S_i_i = H_i + S_i_i
|
| 226 |
+
S_i_i = self.image_image_ln1(S_i_i)
|
| 227 |
+
S_i_i = S_i_i + self.image_mlp(S_i_i)
|
| 228 |
+
S_i_i = self.image_image_ln2(S_i_i)
|
| 229 |
+
|
| 230 |
+
return (S_t_t, S_t_i), (S_i_t, S_i_i)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class ClassificationModule(nn.Module):
|
| 234 |
+
"""
|
| 235 |
+
Classification module that takes final text/image representations
|
| 236 |
+
and outputs logits for {support, refute, not enough info}
|
| 237 |
+
for each evidence path.
|
| 238 |
+
"""
|
| 239 |
+
def __init__(self, embed_dim=768, hidden_dim=256, num_classes=3, dropout=0.1):
|
| 240 |
+
super().__init__()
|
| 241 |
+
# MLPs for text representations
|
| 242 |
+
self.mlp_text_given_text = nn.Sequential(
|
| 243 |
+
nn.Linear(embed_dim, hidden_dim),
|
| 244 |
+
nn.ReLU(),
|
| 245 |
+
nn.Dropout(dropout),
|
| 246 |
+
nn.Linear(hidden_dim, num_classes)
|
| 247 |
+
)
|
| 248 |
+
self.mlp_text_given_image = nn.Sequential(
|
| 249 |
+
nn.Linear(embed_dim, hidden_dim),
|
| 250 |
+
nn.ReLU(),
|
| 251 |
+
nn.Dropout(dropout),
|
| 252 |
+
nn.Linear(hidden_dim, num_classes)
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# MLPs for image representations
|
| 256 |
+
self.mlp_image_given_text = nn.Sequential(
|
| 257 |
+
nn.Linear(embed_dim, hidden_dim),
|
| 258 |
+
nn.ReLU(),
|
| 259 |
+
nn.Dropout(dropout),
|
| 260 |
+
nn.Linear(hidden_dim, num_classes)
|
| 261 |
+
)
|
| 262 |
+
self.mlp_image_given_image = nn.Sequential(
|
| 263 |
+
nn.Linear(embed_dim, hidden_dim),
|
| 264 |
+
nn.ReLU(),
|
| 265 |
+
nn.Dropout(dropout),
|
| 266 |
+
nn.Linear(hidden_dim, num_classes)
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
def forward(self, S_t=None, S_i=None):
|
| 270 |
+
"""
|
| 271 |
+
Args:
|
| 272 |
+
S_t: Tuple of (text_given_text, text_given_image) representations
|
| 273 |
+
S_i: Tuple of (image_given_text, image_given_image) representations
|
| 274 |
+
Returns:
|
| 275 |
+
y_t: Tuple of (text_given_text_logits, text_given_image_logits)
|
| 276 |
+
y_i: Tuple of (image_given_text_logits, image_given_image_logits)
|
| 277 |
+
"""
|
| 278 |
+
y_t_t, y_t_i = None, None
|
| 279 |
+
y_i_t, y_i_i = None, None
|
| 280 |
+
|
| 281 |
+
if S_t is not None:
|
| 282 |
+
S_t_t, S_t_i = S_t
|
| 283 |
+
if S_t_t is not None:
|
| 284 |
+
pooled_t_t = S_t_t.mean(dim=1)
|
| 285 |
+
y_t_t = self.mlp_text_given_text(pooled_t_t)
|
| 286 |
+
if S_t_i is not None:
|
| 287 |
+
pooled_t_i = S_t_i.mean(dim=1)
|
| 288 |
+
y_t_i = self.mlp_text_given_image(pooled_t_i)
|
| 289 |
+
|
| 290 |
+
if S_i is not None:
|
| 291 |
+
S_i_t, S_i_i = S_i
|
| 292 |
+
if S_i_t is not None:
|
| 293 |
+
pooled_i_t = S_i_t.mean(dim=1)
|
| 294 |
+
y_i_t = self.mlp_image_given_text(pooled_i_t)
|
| 295 |
+
if S_i_i is not None:
|
| 296 |
+
pooled_i_i = S_i_i.mean(dim=1)
|
| 297 |
+
y_i_i = self.mlp_image_given_image(pooled_i_i)
|
| 298 |
+
|
| 299 |
+
return (y_t_t, y_t_i), (y_i_t, y_i_i)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class MisinformationDetectionModel(nn.Module):
|
| 303 |
+
"""
|
| 304 |
+
End-to-end model combining:
|
| 305 |
+
1) Multi-view claim representation
|
| 306 |
+
2) Cross-attention evidence conditioning
|
| 307 |
+
3) Classification for each evidence path
|
| 308 |
+
"""
|
| 309 |
+
def __init__(self,
|
| 310 |
+
text_input_dim=384, # DeBERTa-v3-xsmall hidden size
|
| 311 |
+
image_input_dim=1024, # Swinv2-base hidden size
|
| 312 |
+
embed_dim=512,
|
| 313 |
+
num_heads=8,
|
| 314 |
+
dropout=0.1,
|
| 315 |
+
hidden_dim=256,
|
| 316 |
+
num_classes=3,
|
| 317 |
+
mlp_ratio=4.0,
|
| 318 |
+
fused_attn=False):
|
| 319 |
+
super().__init__()
|
| 320 |
+
|
| 321 |
+
self.representation = MultiViewClaimRepresentation(
|
| 322 |
+
text_input_dim=text_input_dim,
|
| 323 |
+
image_input_dim=image_input_dim,
|
| 324 |
+
embed_dim=embed_dim,
|
| 325 |
+
num_heads=num_heads,
|
| 326 |
+
dropout=dropout,
|
| 327 |
+
mlp_ratio=mlp_ratio,
|
| 328 |
+
fused_attn=fused_attn
|
| 329 |
+
)
|
| 330 |
+
self.cross_attn = CrossAttentionEvidenceConditioning(
|
| 331 |
+
text_input_dim=text_input_dim,
|
| 332 |
+
image_input_dim=image_input_dim,
|
| 333 |
+
embed_dim=embed_dim,
|
| 334 |
+
num_heads=num_heads,
|
| 335 |
+
dropout=dropout,
|
| 336 |
+
mlp_ratio=mlp_ratio,
|
| 337 |
+
fused_attn=fused_attn
|
| 338 |
+
)
|
| 339 |
+
self.classifier = ClassificationModule(
|
| 340 |
+
embed_dim=embed_dim,
|
| 341 |
+
hidden_dim=hidden_dim,
|
| 342 |
+
num_classes=num_classes,
|
| 343 |
+
dropout=dropout
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
# Initialize weights
|
| 347 |
+
self._initialize_weights()
|
| 348 |
+
|
| 349 |
+
def _initialize_weights(self):
|
| 350 |
+
for module in self.modules():
|
| 351 |
+
if isinstance(module, nn.Linear):
|
| 352 |
+
nn.init.xavier_uniform_(module.weight)
|
| 353 |
+
if module.bias is not None:
|
| 354 |
+
nn.init.zeros_(module.bias)
|
| 355 |
+
elif isinstance(module, nn.LayerNorm):
|
| 356 |
+
nn.init.ones_(module.weight)
|
| 357 |
+
nn.init.zeros_(module.bias)
|
| 358 |
+
|
| 359 |
+
def forward(self, X_t=None, X_i=None, E_t=None, E_i=None):
|
| 360 |
+
"""
|
| 361 |
+
Args:
|
| 362 |
+
X_t (Tensor): Text claim embeddings (B, L_t, D)
|
| 363 |
+
X_i (Tensor): Image claim embeddings (B, L_i, D)
|
| 364 |
+
E_t (Tensor): Text evidence embeddings (B, L_e_t, D)
|
| 365 |
+
E_i (Tensor): Image evidence embeddings (B, L_e_i, D)
|
| 366 |
+
|
| 367 |
+
Returns:
|
| 368 |
+
y_t: Tuple of (text_given_text_logits, text_given_image_logits)
|
| 369 |
+
y_i: Tuple of (image_given_text_logits, image_given_image_logits)
|
| 370 |
+
Each logit tensor has shape (B, num_classes)
|
| 371 |
+
"""
|
| 372 |
+
# Get fused claim representations
|
| 373 |
+
H_t, H_i = self.representation(X_t, X_i)
|
| 374 |
+
|
| 375 |
+
# Get evidence-conditioned representations for each path
|
| 376 |
+
(S_t_t, S_t_i), (S_i_t, S_i_i) = self.cross_attn(H_t, H_i, E_t, E_i)
|
| 377 |
+
|
| 378 |
+
# Get predictions for each evidence path
|
| 379 |
+
(y_t_t, y_t_i), (y_i_t, y_i_i) = self.classifier(
|
| 380 |
+
S_t=(S_t_t, S_t_i),
|
| 381 |
+
S_i=(S_i_t, S_i_i)
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
return (y_t_t, y_t_i), (y_i_t, y_i_i)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
if __name__ == "__main__":
|
| 388 |
+
# Example usage
|
| 389 |
+
batch_size = 2
|
| 390 |
+
seq_len_t = 5
|
| 391 |
+
seq_len_i = 7
|
| 392 |
+
evidence_len_t = 6
|
| 393 |
+
evidence_len_i = 8
|
| 394 |
+
embed_dim = 768
|
| 395 |
+
|
| 396 |
+
# Create random embeddings
|
| 397 |
+
text_claim = torch.randn(batch_size, seq_len_t, embed_dim)
|
| 398 |
+
image_claim = torch.randn(batch_size, seq_len_i, embed_dim)
|
| 399 |
+
text_evidence = torch.randn(batch_size, evidence_len_t, embed_dim)
|
| 400 |
+
image_evidence = torch.randn(batch_size, evidence_len_i, embed_dim)
|
| 401 |
+
|
| 402 |
+
# Build model
|
| 403 |
+
model = MisinformationDetectionModel(
|
| 404 |
+
embed_dim=embed_dim,
|
| 405 |
+
num_heads=8,
|
| 406 |
+
dropout=0.1,
|
| 407 |
+
hidden_dim=256,
|
| 408 |
+
num_classes=3
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
# Forward pass (multimodal)
|
| 412 |
+
(y_t_t, y_t_i), (y_i_t, y_i_i) = model(
|
| 413 |
+
X_t=text_claim,
|
| 414 |
+
X_i=image_claim,
|
| 415 |
+
E_t=text_evidence,
|
| 416 |
+
E_i=image_evidence
|
| 417 |
+
)
|
| 418 |
+
print("Text-Text logits:", y_t_t.shape) # [B, 3]
|
| 419 |
+
print("Text-Image logits:", y_t_i.shape) # [B, 3]
|
| 420 |
+
print("Image-Text logits:", y_i_t.shape) # [B, 3]
|
| 421 |
+
print("Image-Image logits:", y_i_i.shape) # [B, 3]
|
| 422 |
+
|
| 423 |
+
# Forward pass (unimodal text)
|
| 424 |
+
(y_t_t, y_t_i), (y_i_t, y_i_i) = model(
|
| 425 |
+
X_t=text_claim,
|
| 426 |
+
E_t=text_evidence
|
| 427 |
+
)
|
| 428 |
+
print("\nUnimodal Text:")
|
| 429 |
+
print("Text-Text logits:", y_t_t.shape if y_t_t is not None else None)
|
| 430 |
+
print("Text-Image logits:", y_t_i if y_t_i is not None else None)
|
| 431 |
+
print("Image-Text logits:", y_i_t if y_i_t is not None else None)
|
| 432 |
+
print("Image-Image logits:", y_i_i if y_i_i is not None else None)
|
src/preprocess/__init__.py
ADDED
|
File without changes
|
src/preprocess/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (201 Bytes). View file
|
|
|
src/preprocess/__pycache__/caption.cpython-311.pyc
ADDED
|
Binary file (5.88 kB). View file
|
|
|
src/preprocess/__pycache__/preprocess.cpython-311.pyc
ADDED
|
Binary file (3.74 kB). View file
|
|
|
src/preprocess/caption.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 7 |
+
from src.utils.path_utils import get_project_root
|
| 8 |
+
|
| 9 |
+
# Initialize BLIP model and processor
|
| 10 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 11 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
| 12 |
+
"Salesforce/blip-image-captioning-large"
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
PROJECT_ROOT = get_project_root()
|
| 16 |
+
RAW_DIR = PROJECT_ROOT / "data/raw/factify"
|
| 17 |
+
PROCESSED_DIR = PROJECT_ROOT / "data/preprocessed"
|
| 18 |
+
|
| 19 |
+
BATCH_SIZE = 20 # Number of rows to process per batch
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def generate_caption(image_path: str) -> str:
|
| 23 |
+
"""Generates a caption for an image given its path."""
|
| 24 |
+
try:
|
| 25 |
+
image = Image.open(f"{PROJECT_ROOT}/{image_path}").convert("RGB")
|
| 26 |
+
inputs = processor(image, return_tensors="pt")
|
| 27 |
+
output = model.generate(**inputs)
|
| 28 |
+
return processor.decode(output[0], skip_special_tokens=True)
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"Error processing image {image_path}: {e}")
|
| 31 |
+
return ""
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def process_image_row(row: pd.Series) -> Tuple[str, str, str, str]:
|
| 35 |
+
"""Processes a single row to generate captions and enriched columns."""
|
| 36 |
+
claim_image_caption = generate_caption(row["claim_image"])
|
| 37 |
+
evidence_image_caption = generate_caption(row["evidence_image"])
|
| 38 |
+
|
| 39 |
+
claim_enriched = f"{row['claim']}. {claim_image_caption}"
|
| 40 |
+
evidence_enriched = f"{row['evidence']}. {evidence_image_caption}"
|
| 41 |
+
|
| 42 |
+
return (
|
| 43 |
+
claim_image_caption,
|
| 44 |
+
evidence_image_caption,
|
| 45 |
+
claim_enriched,
|
| 46 |
+
evidence_enriched,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_last_processed_index(df: pd.DataFrame) -> int:
|
| 51 |
+
"""
|
| 52 |
+
Find the last processed row index by searching backwards from the end
|
| 53 |
+
until finding a row where evidence_image_caption is not NA.
|
| 54 |
+
Returns -1 if no processed rows are found.
|
| 55 |
+
"""
|
| 56 |
+
for idx in range(len(df) - 1, -1, -1):
|
| 57 |
+
if pd.notna(df.loc[idx, "evidence_image_caption"]):
|
| 58 |
+
return idx
|
| 59 |
+
return -1
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def process_csv(input_csv: str, output_csv: str) -> None:
|
| 63 |
+
"""Processes the CSV in chunks and writes results incrementally with efficient checkpointing."""
|
| 64 |
+
# Load input DataFrame
|
| 65 |
+
input_df = pd.read_csv(input_csv)
|
| 66 |
+
|
| 67 |
+
# Initialize or load output DataFrame
|
| 68 |
+
if os.path.exists(output_csv):
|
| 69 |
+
output_df = pd.read_csv(output_csv)
|
| 70 |
+
if len(output_df) != len(input_df):
|
| 71 |
+
print(
|
| 72 |
+
"Mismatch in input and output CSV lengths. Reinitializing output CSV..."
|
| 73 |
+
)
|
| 74 |
+
else:
|
| 75 |
+
output_df = input_df.copy()
|
| 76 |
+
for col in [
|
| 77 |
+
"claim_image_caption",
|
| 78 |
+
"evidence_image_caption",
|
| 79 |
+
"claim_enriched",
|
| 80 |
+
"evidence_enriched",
|
| 81 |
+
]:
|
| 82 |
+
output_df[col] = pd.NA
|
| 83 |
+
|
| 84 |
+
# Find the last processed index
|
| 85 |
+
last_processed_idx = get_last_processed_index(output_df)
|
| 86 |
+
print(f"Resuming from index {last_processed_idx + 1}")
|
| 87 |
+
|
| 88 |
+
# Process remaining rows in batches
|
| 89 |
+
total_rows = len(input_df)
|
| 90 |
+
with tqdm(total=total_rows, initial=last_processed_idx + 1) as pbar:
|
| 91 |
+
for idx in range(last_processed_idx + 1, total_rows, BATCH_SIZE):
|
| 92 |
+
batch_end = min(idx + BATCH_SIZE, total_rows)
|
| 93 |
+
|
| 94 |
+
# Process each row in the batch
|
| 95 |
+
for row_idx in range(idx, batch_end):
|
| 96 |
+
row = input_df.iloc[row_idx]
|
| 97 |
+
|
| 98 |
+
# Skip if already processed
|
| 99 |
+
if pd.notna(output_df.at[row_idx, "evidence_image_caption"]):
|
| 100 |
+
continue
|
| 101 |
+
|
| 102 |
+
# Process the row
|
| 103 |
+
claim_cap, evidence_cap, claim_enr, evidence_enr = process_image_row(
|
| 104 |
+
row
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Update the output DataFrame
|
| 108 |
+
output_df.loc[row_idx, "claim_image_caption"] = claim_cap
|
| 109 |
+
output_df.loc[row_idx, "evidence_image_caption"] = evidence_cap
|
| 110 |
+
output_df.loc[row_idx, "claim_enriched"] = claim_enr
|
| 111 |
+
output_df.loc[row_idx, "evidence_enriched"] = evidence_enr
|
| 112 |
+
|
| 113 |
+
pbar.update(1)
|
| 114 |
+
|
| 115 |
+
# Save after each batch
|
| 116 |
+
output_df.to_csv(output_csv, index=False)
|
| 117 |
+
print(f"Saved progress at index {batch_end}")
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
if __name__ == "__main__":
|
| 121 |
+
for name in ["train", "test"]:
|
| 122 |
+
input_csv = f"{PROCESSED_DIR}/{name}.csv"
|
| 123 |
+
output_csv = f"{PROCESSED_DIR}/{name}_enriched.csv"
|
| 124 |
+
|
| 125 |
+
if not os.path.exists(input_csv):
|
| 126 |
+
raise FileNotFoundError(f"Input CSV file does not exist: {input_csv}")
|
| 127 |
+
|
| 128 |
+
process_csv(input_csv, output_csv)
|
| 129 |
+
print(f"Processing complete. Output saved to {output_csv}")
|
src/preprocess/preprocess.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
from src.utils.data_utils import HEADERS
|
| 4 |
+
from src.utils.path_utils import get_project_root
|
| 5 |
+
|
| 6 |
+
# Constants
|
| 7 |
+
PROJECT_ROOT = get_project_root()
|
| 8 |
+
RAW_DIR = PROJECT_ROOT / "data/raw/factify"
|
| 9 |
+
PROCESSED_DIR = PROJECT_ROOT / "data/preprocessed"
|
| 10 |
+
IMAGES_DIR = RAW_DIR / "extracted/images"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def ensure_directories():
|
| 14 |
+
"""Ensure that necessary directories exist."""
|
| 15 |
+
PROCESSED_DIR.mkdir(parents=True, exist_ok=True) # Create 'data/preprocessed'
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def preprocess_csv(dataset: str):
|
| 19 |
+
"""
|
| 20 |
+
Preprocess the given dataset CSV (train or test).
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
dataset (str): The dataset name ('train' or 'test').
|
| 24 |
+
"""
|
| 25 |
+
# Paths
|
| 26 |
+
ensure_directories()
|
| 27 |
+
|
| 28 |
+
csv_path = RAW_DIR / f"extracted/{dataset}.csv"
|
| 29 |
+
processed_csv_path = PROCESSED_DIR / f"{dataset}.csv"
|
| 30 |
+
images_folder = IMAGES_DIR / dataset
|
| 31 |
+
|
| 32 |
+
if not csv_path.exists():
|
| 33 |
+
print(f"Dataset CSV not found: {csv_path}")
|
| 34 |
+
return
|
| 35 |
+
|
| 36 |
+
# Load the CSV
|
| 37 |
+
df = pd.read_csv(csv_path, names=HEADERS, header=None, sep="\t", skiprows=1)
|
| 38 |
+
|
| 39 |
+
# Update file paths for images
|
| 40 |
+
def update_image_path(row, column_name):
|
| 41 |
+
"""Update the image path if it exists, else leave as None."""
|
| 42 |
+
image_file = row[column_name]
|
| 43 |
+
file_id = row["id"]
|
| 44 |
+
if column_name == "claim_image_original":
|
| 45 |
+
file_path = images_folder / f"{file_id}_claim.jpg"
|
| 46 |
+
elif column_name == "evidence_image_original":
|
| 47 |
+
file_path = images_folder / f"{file_id}_evidence.jpg"
|
| 48 |
+
else:
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
# Check if the file exists
|
| 52 |
+
if file_path.exists():
|
| 53 |
+
# Use the relative path starting from "/data/.."
|
| 54 |
+
return str(file_path.relative_to(PROJECT_ROOT))
|
| 55 |
+
return None
|
| 56 |
+
|
| 57 |
+
df.rename(
|
| 58 |
+
columns={
|
| 59 |
+
"claim_image": "claim_image_original",
|
| 60 |
+
"evidence_image": "evidence_image_original",
|
| 61 |
+
},
|
| 62 |
+
inplace=True,
|
| 63 |
+
)
|
| 64 |
+
df["claim_image"] = df.apply(
|
| 65 |
+
lambda row: update_image_path(row, "claim_image_original"), axis=1
|
| 66 |
+
)
|
| 67 |
+
df["evidence_image"] = df.apply(
|
| 68 |
+
lambda row: update_image_path(row, "evidence_image_original"), axis=1
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Save the processed CSV
|
| 72 |
+
df.to_csv(processed_csv_path, index=False)
|
| 73 |
+
print(f"Processed {dataset}.csv saved to {processed_csv_path}")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def main():
|
| 77 |
+
for dataset in ["train", "test"]:
|
| 78 |
+
preprocess_csv(dataset)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
if __name__ == "__main__":
|
| 82 |
+
main()
|
src/utils/__init__.py
ADDED
|
File without changes
|
src/utils/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (197 Bytes). View file
|
|
|
src/utils/__pycache__/data_utils.cpython-311.pyc
ADDED
|
Binary file (3.24 kB). View file
|
|
|
src/utils/__pycache__/path_utils.cpython-311.pyc
ADDED
|
Binary file (538 Bytes). View file
|
|
|
src/utils/data_utils.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from typing import Dict, Any
|
| 5 |
+
from src.utils.path_utils import get_project_root
|
| 6 |
+
|
| 7 |
+
# Constants
|
| 8 |
+
PROJECT_ROOT = get_project_root()
|
| 9 |
+
PREPROCESSED_DIR = PROJECT_ROOT / "data/preprocessed"
|
| 10 |
+
|
| 11 |
+
HEADERS = [
|
| 12 |
+
"id",
|
| 13 |
+
"claim",
|
| 14 |
+
"claim_image",
|
| 15 |
+
"evidence",
|
| 16 |
+
"evidence_image",
|
| 17 |
+
"category",
|
| 18 |
+
"claim_ocr",
|
| 19 |
+
"evidence_ocr",
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_preprocessed_data(dataset: str = "train") -> pd.DataFrame:
|
| 24 |
+
"""
|
| 25 |
+
Load the preprocessed data for the specified dataset.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
dataset (str): Either 'train' or 'test'. Defaults to 'train'.
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
pd.DataFrame: A DataFrame containing the preprocessed data.
|
| 32 |
+
"""
|
| 33 |
+
csv_path = PREPROCESSED_DIR / f"{dataset}.csv"
|
| 34 |
+
|
| 35 |
+
if not csv_path.exists():
|
| 36 |
+
raise FileNotFoundError(f"Preprocessed dataset CSV not found: {csv_path}")
|
| 37 |
+
|
| 38 |
+
return pd.read_csv(csv_path)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def load_images_for_row(row: Dict[str, Any]) -> Dict[str, Any]:
|
| 42 |
+
"""
|
| 43 |
+
Load the claim and evidence images for a given row of data.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
row (Dict[str, Any]): A dictionary representing a row of preprocessed data.
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
Dict[str, Any]: A dictionary containing the original row with loaded images added.
|
| 50 |
+
"""
|
| 51 |
+
result = row.copy() # Copy the original row to avoid modifying the input
|
| 52 |
+
claim_image_path = row.get("claim_image")
|
| 53 |
+
evidence_image_path = row.get("evidence_image")
|
| 54 |
+
|
| 55 |
+
if claim_image_path and os.path.exists(claim_image_path):
|
| 56 |
+
try:
|
| 57 |
+
result["claim_image"] = Image.open(claim_image_path).convert("RGB")
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Failed to load claim image from {claim_image_path}: {e}")
|
| 60 |
+
result["claim_image"] = None
|
| 61 |
+
else:
|
| 62 |
+
result["claim_image"] = None
|
| 63 |
+
|
| 64 |
+
if evidence_image_path and os.path.exists(evidence_image_path):
|
| 65 |
+
try:
|
| 66 |
+
result["evidence_image"] = Image.open(evidence_image_path).convert("RGB")
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Failed to load evidence image from {evidence_image_path}: {e}")
|
| 69 |
+
result["evidence_image"] = None
|
| 70 |
+
else:
|
| 71 |
+
result["evidence_image"] = None
|
| 72 |
+
|
| 73 |
+
return result
|
src/utils/path_utils.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def get_project_root() -> Path:
|
| 5 |
+
"""Get the project root directory."""
|
| 6 |
+
return Path(__file__).parent.parent.parent
|