File size: 11,679 Bytes
dee681d
 
 
 
5e47f17
 
dee681d
 
 
 
 
 
 
 
 
 
 
 
 
 
5e47f17
 
 
dee681d
 
a02e9eb
dee681d
a02e9eb
dee681d
 
 
 
 
a02e9eb
 
dee681d
5e47f17
a02e9eb
 
dee681d
 
 
 
 
 
 
a02e9eb
a599a8c
5e47f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7c6838
5e47f17
 
 
 
 
 
 
 
 
 
 
a599a8c
 
 
 
 
5e47f17
a599a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fbd7b6
a599a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e47f17
a599a8c
 
 
 
 
5e47f17
 
 
 
a599a8c
5e47f17
 
a599a8c
 
 
 
 
 
 
 
 
 
5e47f17
a599a8c
 
0edebe3
a599a8c
 
fa2c247
a599a8c
8294e62
a599a8c
 
 
 
 
 
 
8294e62
a599a8c
8294e62
a599a8c
4fbd7b6
a599a8c
 
 
 
5e47f17
 
 
 
 
 
 
 
 
a599a8c
4fbd7b6
a599a8c
 
 
 
 
 
 
 
 
5e47f17
a599a8c
 
 
 
 
 
5e47f17
a599a8c
 
 
0edebe3
 
 
 
 
 
 
a599a8c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import gradio as gr
import pandas as pd
from openai import OpenAI
import os
import plotly.graph_objects as go
import networkx as nx

# Initialize NVIDIA API client
client = OpenAI(
    base_url="https://integrate.api.nvidia.com/v1",
    api_key=os.environ.get("NVIDIA_API_KEY")
)

# Load CSV files
validated_entities_df = pd.read_csv("validated_entities_final.csv")
relations_df = pd.read_csv("extracted_entities_relations_countries.csv")

# Get list of entities for dropdown
entity_list = validated_entities_df['entity'].dropna().unique().tolist()

# Get all unique countries from the data
all_countries_in_data = relations_df['country'].dropna().unique().tolist()

def get_entity_triples(entity):
    """Extract all triples associated with the selected entity"""
    # Filter rows where entity appears in head or tail
    filtered_df = relations_df[
        (relations_df['head'] == entity) | (relations_df['tail'] == entity)
    ]
    
    if filtered_df.empty:
        return [], [], []
    
    # Extract unique triples
    triples = []
    for _, row in filtered_df.iterrows():
        triple = (row['head'], row['relation'], row['tail'])
        if triple not in triples:
            triples.append(triple)
    
    # Get associated sentences
    sentences = filtered_df['sentence'].dropna().unique().tolist()
    
    # Get associated countries
    countries = filtered_df['country'].dropna().unique().tolist()
    
    return triples, sentences, countries

def create_knowledge_graph(entity, triples):
    """Create interactive knowledge graph visualization using plotly"""
    if not triples:
        return None
    
    # Create directed graph
    G = nx.DiGraph()
    
    # Add edges (triples)
    for head, relation, tail in triples:
        G.add_edge(head, tail, label=relation)
    
    # Generate layout
    pos = nx.spring_layout(G, k=2, iterations=50, seed=42)
    
    # Create edge traces
    edge_traces = []
    edge_labels = []
    
    for edge in G.edges(data=True):
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        
        # Edge line
        edge_trace = go.Scatter(
            x=[x0, x1, None],
            y=[y0, y1, None],
            mode='lines',
            line=dict(width=2, color='#888'),
            hoverinfo='none',
            showlegend=False
        )
        edge_traces.append(edge_trace)
        
        # Edge label (relation)
        edge_labels.append(go.Scatter(
            x=[(x0 + x1) / 2],
            y=[(y0 + y1) / 2],
            mode='text',
            text=[edge[2]['label']],
            textposition='middle center',
            textfont=dict(size=8, color='#666'),
            hoverinfo='text',
            hovertext=edge[2]['label'],
            showlegend=False
        ))
    
    # Create node trace
    node_x = []
    node_y = []
    node_text = []
    node_colors = []
    node_sizes = []
    
    for node in G.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
        node_text.append(node)
        
        # Highlight the main entity
        if node == entity:
            node_colors.append('#FF6B6B')
            node_sizes.append(30)
        else:
            node_colors.append('#4ECDC4')
            node_sizes.append(20)
    
    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        mode='markers+text',
        text=node_text,
        textposition='top center',
        textfont=dict(size=10, color='#000'),
        marker=dict(
            size=node_sizes,
            color=node_colors,
            line=dict(width=2, color='#fff')
        ),
        hoverinfo='text',
        hovertext=node_text,
        showlegend=False
    )
    
    # Create figure
    fig = go.Figure(data=edge_traces + edge_labels + [node_trace])
    
    fig.update_layout(
        title=dict(
            text=f"Knowledge Graph for: {entity}",
            x=0.5,
            xanchor='center',
            font=dict(size=16)
        ),
        showlegend=False,
        hovermode='closest',
        margin=dict(b=20, l=5, r=5, t=40),
        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        plot_bgcolor='#f9f9f9',
        height=600
    )
    
    return fig

def create_africa_map(countries):
    """Create Africa map with highlighted countries"""
    if not countries:
        return None
    
    # Use all countries from the dataset for the base map
    locations = []
    z_values = []
    hover_text = []
    
    for country in all_countries_in_data:
        locations.append(country)
        if country in countries:
            z_values.append(1)
            hover_text.append(f"{country} (Selected Entity)")
        else:
            z_values.append(0)
            hover_text.append(country)
    
    fig = go.Figure(data=go.Choropleth(
        locations=locations,
        locationmode='country names',
        z=z_values,
        text=hover_text,
        colorscale=[[0, '#E8E8E8'], [1, '#FF6B6B']],
        showscale=False,
        marker_line_color='white',
        marker_line_width=1,
        hovertemplate='<b>%{text}</b><extra></extra>'
    ))
    
    fig.update_geos(
        scope='africa',
        showframe=True,
        showcoastlines=True,
        projection_type='natural earth',
        bgcolor='#f0f0f0'
    )
    
    fig.update_layout(
        title=dict(
            text=f"Countries with Topic Mentions ({len(countries)} of {len(all_countries_in_data)} total)",
            x=0.5,
            xanchor='center',
            font=dict(size=16)
        ),
        margin=dict(l=0, r=0, t=40, b=0),
        height=500,
        geo=dict(bgcolor='#f9f9f9')
    )
    
    return fig

def generate_entity_description(entity, triples):
    """Generate entity description using Llama 405B based on triples"""
    if not triples:
        return "No triples found for this entity."
    
    triples_text = "\n".join([f"- {head} | {rel} | {tail}" for head, rel, tail in triples])
    
    prompt = f"""Based on the following knowledge graph triples, provide a comprehensive description of "{entity}":

{triples_text}

Please synthesize this information into a clear, coherent description that explains what {entity} is, its relationships, and its role based on the triples provided."""

    try:
        completion = client.chat.completions.create(
            model="meta/llama-3.1-405b-instruct",
            messages=[{"role": "user", "content": prompt}],
            temperature=0.7,
            max_tokens=1024
        )
        return completion.choices[0].message.content
    except Exception as e:
        return f"Error generating description: {str(e)}"

def generate_country_paragraphs(entity, sentences, countries):
    """Generate country-specific paragraphs using sentences and country info"""
    if not sentences or not countries:
        return "No sentences or countries found for this topic."
    
    country_paragraphs = []
    
    for country in countries:
        # Filter sentences for this country
        country_sentences = relations_df[
            ((relations_df['head'] == entity) | (relations_df['tail'] == entity)) &
            (relations_df['country'] == country)
        ]['sentence'].dropna().unique().tolist()
        
        if not country_sentences:
            continue
        
        sentences_text = "\n".join([f"- {sent}" for sent in country_sentences[:10]])  # Limit to 10 sentences
        
        prompt = f"""Based on the following sentences about "{entity}" in {country}, generate a comprehensive paragraph that describes the entity's role, activities, and significance in {country}:

{sentences_text}

Please create a well-structured paragraph that synthesizes this information specifically for {country}."""

        try:
            completion = client.chat.completions.create(
                model="meta/llama-3.1-405b-instruct",
                messages=[{"role": "user", "content": prompt}],
                temperature=0.7,
                max_tokens=1024
            )
            country_paragraph = f"**{country}:**\n{completion.choices[0].message.content}\n"
            country_paragraphs.append(country_paragraph)
        except Exception as e:
            country_paragraphs.append(f"**{country}:** Error generating paragraph: {str(e)}\n")
    
    return "\n".join(country_paragraphs)

def process_entity(entity):
    """Main function to process selected entity"""
    if not entity:
        return None, None, "", "", ""
    
    # Get triples, sentences, and countries
    triples, sentences, countries = get_entity_triples(entity)
    
    if not triples:
        return None, None, "No data found for this entity.", "", ""
    
    # Create knowledge graph
    kg_fig = create_knowledge_graph(entity, triples)
    
    # Create Africa map
    map_fig = create_africa_map(countries)
    
    # Generate entity description
    description = generate_entity_description(entity, triples)
    
    # Generate country-specific paragraphs
    country_paragraphs = generate_country_paragraphs(entity, sentences, countries)
    
    # Format metadata
    metadata = f"**Associated Countries:** {', '.join(countries)}\n\n**Number of Triples:** {len(triples)}\n\n**Number of Sentences:** {len(sentences)}"
    
    return kg_fig, map_fig, description, country_paragraphs, metadata

# Create Gradio interface
with gr.Blocks(title="AU Education Policy Glossary", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # AU Education Policy Glossary (AU-EPG)
        
        Select an Education Policy topic to examine its context and implementation across Africa.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            entity_dropdown = gr.Dropdown(
                choices=sorted(entity_list),
                label="Select Topic",
                filterable=True,
                info="Start typing to search for a topic"
            )
            search_btn = gr.Button("Search", variant="primary", size="lg")
            
            gr.Markdown("### Metadata")
            metadata_output = gr.Markdown()
        
        with gr.Column(scale=3):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Knowledge Graph Visualization")
                    kg_plot = gr.Plot(label="Knowledge Graph")
                
                with gr.Column():
                    gr.Markdown("### Geographic Distribution")
                    map_plot = gr.Plot(label="Africa Map")
            
            gr.Markdown("### Topic Definition")
            description_output = gr.Markdown()
            
            gr.Markdown("### Country-Specific Insights")
            country_output = gr.Markdown()
    
    # Connect button to processing function
    search_btn.click(
        fn=process_entity,
        inputs=[entity_dropdown],
        outputs=[kg_plot, map_plot, description_output, country_output, metadata_output]
    )
    
    # Also trigger on dropdown change
    entity_dropdown.change(
        fn=process_entity,
        inputs=[entity_dropdown],
        outputs=[kg_plot, map_plot, description_output, country_output, metadata_output]
    )
    
    gr.Markdown(
            """
            ---
            💡 **About this app:**  
            This app is open source and built to help explore education policy initiatives across African countries.  
            You’re welcome to view, use, and contribute to its codebase or adapt it for your own research and data projects.
            """
        )

# Launch the app
if __name__ == "__main__":
    demo.launch()