File size: 7,966 Bytes
917a889
 
 
 
 
 
523e08e
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from typing import *
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ..modules.utils import convert_module_to, manual_cast, str_to_dtype
from ..modules.transformer import AbsolutePositionEmbedder
from ..modules import sparse as sp
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
from .sparse_structure_flow import TimestepEmbedder
from .sparse_elastic_mixin import SparseTransformerElasticMixin
    

class SLatFlowModel(nn.Module):
    def __init__(
        self,
        resolution: int,
        in_channels: int,
        model_channels: int,
        cond_channels: int,
        out_channels: int,
        num_blocks: int,
        num_heads: Optional[int] = None,
        num_head_channels: Optional[int] = 64,
        mlp_ratio: float = 4,
        pe_mode: Literal["ape", "rope"] = "ape",
        rope_freq: Tuple[float, float] = (1.0, 10000.0),
        dtype: str = 'float32',
        use_checkpoint: bool = False,
        share_mod: bool = False,
        initialization: str = 'vanilla',
        qk_rms_norm: bool = False,
        qk_rms_norm_cross: bool = False,
    ):
        super().__init__()
        self.resolution = resolution
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.cond_channels = cond_channels
        self.out_channels = out_channels
        self.num_blocks = num_blocks
        self.num_heads = num_heads or model_channels // num_head_channels
        self.mlp_ratio = mlp_ratio
        self.pe_mode = pe_mode
        self.use_checkpoint = use_checkpoint
        self.share_mod = share_mod
        self.initialization = initialization
        self.qk_rms_norm = qk_rms_norm
        self.qk_rms_norm_cross = qk_rms_norm_cross
        self.dtype = str_to_dtype(dtype)

        self.t_embedder = TimestepEmbedder(model_channels)
        if share_mod:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(),
                nn.Linear(model_channels, 6 * model_channels, bias=True)
            )

        if pe_mode == "ape":
            self.pos_embedder = AbsolutePositionEmbedder(model_channels)

        self.input_layer = sp.SparseLinear(in_channels, model_channels)
            
        self.blocks = nn.ModuleList([
            ModulatedSparseTransformerCrossBlock(
                model_channels,
                cond_channels,
                num_heads=self.num_heads,
                mlp_ratio=self.mlp_ratio,
                attn_mode='full',
                use_checkpoint=self.use_checkpoint,
                use_rope=(pe_mode == "rope"),
                rope_freq=rope_freq,
                share_mod=self.share_mod,
                qk_rms_norm=self.qk_rms_norm,
                qk_rms_norm_cross=self.qk_rms_norm_cross,
            )
            for _ in range(num_blocks)
        ])
            
        self.out_layer = sp.SparseLinear(model_channels, out_channels)

        self.initialize_weights()
        self.convert_to(self.dtype)

    @property
    def device(self) -> torch.device:
        """
        Return the device of the model.
        """
        return next(self.parameters()).device

    def convert_to(self, dtype: torch.dtype) -> None:
        """
        Convert the torso of the model to the specified dtype.
        """
        self.dtype = dtype
        self.blocks.apply(partial(convert_module_to, dtype=dtype))

    def initialize_weights(self) -> None:
        if self.initialization == 'vanilla':
            # Initialize transformer layers:
            def _basic_init(module):
                if isinstance(module, nn.Linear):
                    torch.nn.init.xavier_uniform_(module.weight)
                    if module.bias is not None:
                        nn.init.constant_(module.bias, 0)
            self.apply(_basic_init)

            # Initialize timestep embedding MLP:
            nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
            nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

            # Zero-out adaLN modulation layers in DiT blocks:
            if self.share_mod:
                nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
                nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
            else:
                for block in self.blocks:
                    nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
                    nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

            # Zero-out output layers:
            nn.init.constant_(self.out_layer.weight, 0)
            nn.init.constant_(self.out_layer.bias, 0)
            
        elif self.initialization == 'scaled':
            # Initialize transformer layers:
            def _basic_init(module):
                if isinstance(module, nn.Linear):
                    torch.nn.init.normal_(module.weight, std=np.sqrt(2.0 / (5.0 * self.model_channels)))
                    if module.bias is not None:
                        nn.init.constant_(module.bias, 0)
            self.apply(_basic_init)
            
            # Scaled init for to_out and ffn2
            def _scaled_init(module):
                if isinstance(module, nn.Linear):
                    torch.nn.init.normal_(module.weight, std=1.0 / np.sqrt(5 * self.num_blocks * self.model_channels))
                    if module.bias is not None:
                        nn.init.constant_(module.bias, 0)
            for block in self.blocks:
                block.self_attn.to_out.apply(_scaled_init)
                block.cross_attn.to_out.apply(_scaled_init)
                block.mlp.mlp[2].apply(_scaled_init)
            
            # Initialize input layer to make the initial representation have variance 1
            nn.init.normal_(self.input_layer.weight, std=1.0 / np.sqrt(self.in_channels))
            nn.init.zeros_(self.input_layer.bias)
            
            # Initialize timestep embedding MLP:
            nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
            nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
            
            # Zero-out adaLN modulation layers in DiT blocks:
            if self.share_mod:
                nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
                nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
            else:
                for block in self.blocks:
                    nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
                    nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

            # Zero-out output layers:
            nn.init.constant_(self.out_layer.weight, 0)
            nn.init.constant_(self.out_layer.bias, 0)

    def forward(
        self,
        x: sp.SparseTensor,
        t: torch.Tensor,
        cond: Union[torch.Tensor, List[torch.Tensor]],
        concat_cond: Optional[sp.SparseTensor] = None,
        **kwargs
    ) -> sp.SparseTensor:
        if concat_cond is not None:
            x = sp.sparse_cat([x, concat_cond], dim=-1)
        if isinstance(cond, list):
            cond = sp.VarLenTensor.from_tensor_list(cond)

        h = self.input_layer(x)
        h = manual_cast(h, self.dtype)
        t_emb = self.t_embedder(t)
        if self.share_mod:
            t_emb = self.adaLN_modulation(t_emb)
        t_emb = manual_cast(t_emb, self.dtype)
        cond = manual_cast(cond, self.dtype)

        if self.pe_mode == "ape":
            pe = self.pos_embedder(h.coords[:, 1:])
            h = h + manual_cast(pe, self.dtype)
        for block in self.blocks:
            h = block(h, t_emb, cond)

        h = manual_cast(h, x.dtype)
        h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
        h = self.out_layer(h)
        return h


class ElasticSLatFlowModel(SparseTransformerElasticMixin, SLatFlowModel):
    """
    SLat Flow Model with elastic memory management.
    Used for training with low VRAM.
    """
    pass