Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import os | |
| os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1' | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
| os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json') | |
| os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1' | |
| from datetime import datetime | |
| import shutil | |
| import cv2 | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from trellis2.modules.sparse import SparseTensor | |
| from trellis2.pipelines import Trellis2ImageTo3DPipeline | |
| from trellis2.renderers import EnvMap | |
| from trellis2.utils import render_utils | |
| import o_voxel | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| def start_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shutil.rmtree(user_dir) | |
| def preprocess_image(image: Image.Image) -> Image.Image: | |
| """ | |
| Preprocess the input image. | |
| Args: | |
| image (Image.Image): The input image. | |
| Returns: | |
| Image.Image: The preprocessed image. | |
| """ | |
| processed_image = pipeline.preprocess_image(image) | |
| return processed_image | |
| def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict: | |
| shape_slat, tex_slat, res = latents | |
| return { | |
| 'shape_slat_feats': shape_slat.feats.cpu().numpy(), | |
| 'tex_slat_feats': tex_slat.feats.cpu().numpy(), | |
| 'coords': shape_slat.coords.cpu().numpy(), | |
| 'res': res, | |
| } | |
| def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]: | |
| shape_slat = SparseTensor( | |
| feats=torch.from_numpy(state['shape_slat_feats']).cuda(), | |
| coords=torch.from_numpy(state['coords']).cuda(), | |
| ) | |
| tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda()) | |
| return shape_slat, tex_slat, state['res'] | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """ | |
| Get the random seed. | |
| """ | |
| return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| def image_to_3d( | |
| image: Image.Image, | |
| seed: int, | |
| resolution: str, | |
| ss_guidance_strength: float, | |
| ss_guidance_rescale: float, | |
| ss_sampling_steps: int, | |
| ss_rescale_t: float, | |
| shape_slat_guidance_strength: float, | |
| shape_slat_guidance_rescale: float, | |
| shape_slat_sampling_steps: int, | |
| shape_slat_rescale_t: float, | |
| tex_slat_guidance_strength: float, | |
| tex_slat_guidance_rescale: float, | |
| tex_slat_sampling_steps: int, | |
| tex_slat_rescale_t: float, | |
| req: gr.Request, | |
| progress=gr.Progress(track_tqdm=True), | |
| ) -> str: | |
| """ | |
| Convert an image to a 3D model. | |
| Args: | |
| image (Image.Image): The input image. | |
| seed (int): The random seed. | |
| ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
| ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
| shape_slat_guidance_strength (float): The guidance strength for shape slat generation. | |
| shape_slat_sampling_steps (int): The number of sampling steps for shape slat generation. | |
| tex_slat_guidance_strength (float): The guidance strength for texture slat generation. | |
| tex_slat_sampling_steps (int): The number of sampling steps for texture slat generation. | |
| Returns: | |
| str: The path to the preview video of the 3D model. | |
| str: The path to the 3D model. | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| outputs, latents = pipeline.run( | |
| image, | |
| seed=seed, | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "guidance_strength": ss_guidance_strength, | |
| "guidance_rescale": ss_guidance_rescale, | |
| "rescale_t": ss_rescale_t, | |
| }, | |
| shape_slat_sampler_params={ | |
| "steps": shape_slat_sampling_steps, | |
| "guidance_strength": shape_slat_guidance_strength, | |
| "guidance_rescale": shape_slat_guidance_rescale, | |
| "rescale_t": shape_slat_rescale_t, | |
| }, | |
| tex_slat_sampler_params={ | |
| "steps": tex_slat_sampling_steps, | |
| "guidance_strength": tex_slat_guidance_strength, | |
| "guidance_rescale": tex_slat_guidance_rescale, | |
| "rescale_t": tex_slat_rescale_t, | |
| }, | |
| pipeline_type={ | |
| "512": "512", | |
| "1024": "512->1024", | |
| "1536": "512->1536", | |
| }[resolution], | |
| return_latent=True, | |
| ) | |
| mesh = outputs[0] | |
| mesh.simplify(16777216) # nvdiffrast limit | |
| images = render_utils.make_pbr_vis_frames( | |
| render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, envmap=envmap), | |
| resolution=1024 | |
| ) | |
| state = pack_state(latents) | |
| torch.cuda.empty_cache() | |
| return state, [Image.fromarray(image) for image in images] | |
| def extract_glb( | |
| state: dict, | |
| decimation_target: int, | |
| texture_size: int, | |
| req: gr.Request, | |
| progress=gr.Progress(track_tqdm=True), | |
| ) -> Tuple[str, str]: | |
| """ | |
| Extract a GLB file from the 3D model. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| decimation_target (int): The target face count for decimation. | |
| texture_size (int): The texture resolution. | |
| Returns: | |
| str: The path to the extracted GLB file. | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shape_slat, tex_slat, res = unpack_state(state) | |
| mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0] | |
| glb = o_voxel.postprocess.to_glb( | |
| vertices=mesh.vertices, | |
| faces=mesh.faces, | |
| attr_volume=mesh.attrs, | |
| coords=mesh.coords, | |
| attr_layout=pipeline.pbr_attr_layout, | |
| grid_size=res, | |
| aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]], | |
| decimation_target=decimation_target, | |
| texture_size=texture_size, | |
| remesh=True, | |
| remesh_band=1, | |
| use_tqdm=True, | |
| )[0] | |
| now = datetime.now() | |
| timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}" | |
| os.makedirs(user_dir, exist_ok=True) | |
| glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb') | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| return glb_path, glb_path | |
| css = """ | |
| .stepper-wrapper { | |
| padding: 0; | |
| } | |
| .stepper-container { | |
| padding: 0; | |
| align-items: center; | |
| } | |
| .step-button { | |
| flex-direction: row; | |
| } | |
| .step-connector { | |
| transform: none; | |
| } | |
| .step-number { | |
| width: 16px; | |
| height: 16px; | |
| } | |
| .step-label { | |
| position: relative; | |
| bottom: 0; | |
| } | |
| """ | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| ## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/trellis.2) | |
| * Upload an image and click "Generate" to create a 3D asset. | |
| * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=360): | |
| image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400) | |
| resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="512") | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| decimation_target = gr.Slider(10000, 500000, label="Decimation Target", value=100000, step=10000) | |
| texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024) | |
| with gr.Accordion(label="Advanced Settings", open=False): | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1) | |
| gr.Markdown("Stage 2: Shape Generation") | |
| with gr.Row(): | |
| shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01) | |
| shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) | |
| gr.Markdown("Stage 3: Material Generation") | |
| with gr.Row(): | |
| tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1) | |
| tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01) | |
| tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(scale=10): | |
| with gr.Walkthrough(selected=0) as walkthrough: | |
| with gr.Step("Preview", id=0): | |
| preview_output = gr.Gallery(label="3D Asset Preview", height=800, show_label=True, preview=True) | |
| extract_btn = gr.Button("Extract GLB") | |
| with gr.Step("Extract", id=1): | |
| glb_output = gr.Model3D(label="Extracted GLB", height=800, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0)) | |
| download_btn = gr.DownloadButton(label="Download GLB") | |
| with gr.Column(scale=1, min_width=172): | |
| examples = gr.Examples( | |
| examples=[ | |
| f'assets/example_images/{image}' | |
| for image in os.listdir("assets/example_images") | |
| ], | |
| inputs=[image_prompt], | |
| fn=preprocess_image, | |
| outputs=[image_prompt], | |
| run_on_click=True, | |
| examples_per_page=18, | |
| ) | |
| output_buf = gr.State() | |
| # Handlers | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| image_prompt.upload( | |
| preprocess_image, | |
| inputs=[image_prompt], | |
| outputs=[image_prompt], | |
| ) | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| ).then( | |
| lambda: gr.Walkthrough(selected=0), outputs=walkthrough | |
| ).then( | |
| image_to_3d, | |
| inputs=[ | |
| image_prompt, seed, resolution, | |
| ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t, | |
| shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t, | |
| tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t, | |
| ], | |
| outputs=[output_buf, preview_output], | |
| ) | |
| extract_btn.click( | |
| lambda: gr.Walkthrough(selected=1), outputs=walkthrough | |
| ).then( | |
| extract_glb, | |
| inputs=[output_buf, decimation_target, texture_size], | |
| outputs=[glb_output, download_btn], | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| pipeline = Trellis2ImageTo3DPipeline.from_pretrained('JeffreyXiang/TRELLIS.2-4B') | |
| pipeline.low_vram = False | |
| pipeline.cuda() | |
| envmap = EnvMap(torch.tensor( | |
| cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), | |
| dtype=torch.float32, device='cuda' | |
| )) | |
| demo.launch(css=css, mcp_server=True) |