TRELLIS.2 / trellis2 /utils /general_utils.py
JeffreyXiang's picture
update
917a889
raw
history blame
13.5 kB
import re
import numpy as np
import cv2
import torch
import contextlib
# Dictionary utils
def _dict_merge(dicta, dictb, prefix=''):
"""
Merge two dictionaries.
"""
assert isinstance(dicta, dict), 'input must be a dictionary'
assert isinstance(dictb, dict), 'input must be a dictionary'
dict_ = {}
all_keys = set(dicta.keys()).union(set(dictb.keys()))
for key in all_keys:
if key in dicta.keys() and key in dictb.keys():
if isinstance(dicta[key], dict) and isinstance(dictb[key], dict):
dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}')
else:
raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}')
elif key in dicta.keys():
dict_[key] = dicta[key]
else:
dict_[key] = dictb[key]
return dict_
def dict_merge(dicta, dictb):
"""
Merge two dictionaries.
"""
return _dict_merge(dicta, dictb, prefix='')
def dict_foreach(dic, func, special_func={}):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
dic[key] = dict_foreach(dic[key], func)
else:
if key in special_func.keys():
dic[key] = special_func[key](dic[key])
else:
dic[key] = func(dic[key])
return dic
def dict_reduce(dicts, func, special_func={}):
"""
Reduce a list of dictionaries. Leaf values must be scalars.
"""
assert isinstance(dicts, list), 'input must be a list of dictionaries'
assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries'
assert len(dicts) > 0, 'input must be a non-empty list of dictionaries'
all_keys = set([key for dict_ in dicts for key in dict_.keys()])
reduced_dict = {}
for key in all_keys:
vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()]
if isinstance(vlist[0], dict):
reduced_dict[key] = dict_reduce(vlist, func, special_func)
else:
if key in special_func.keys():
reduced_dict[key] = special_func[key](vlist)
else:
reduced_dict[key] = func(vlist)
return reduced_dict
def dict_any(dic, func):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
if dict_any(dic[key], func):
return True
else:
if func(dic[key]):
return True
return False
def dict_all(dic, func):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
if not dict_all(dic[key], func):
return False
else:
if not func(dic[key]):
return False
return True
def dict_flatten(dic, sep='.'):
"""
Flatten a nested dictionary into a dictionary with no nested dictionaries.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
flat_dict = {}
for key in dic.keys():
if isinstance(dic[key], dict):
sub_dict = dict_flatten(dic[key], sep=sep)
for sub_key in sub_dict.keys():
flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key]
else:
flat_dict[key] = dic[key]
return flat_dict
# Context utils
@contextlib.contextmanager
def nested_contexts(*contexts):
with contextlib.ExitStack() as stack:
for ctx in contexts:
stack.enter_context(ctx())
yield
# Image utils
def make_grid(images, nrow=None, ncol=None, aspect_ratio=None):
num_images = len(images)
if nrow is None and ncol is None:
if aspect_ratio is not None:
nrow = int(np.round(np.sqrt(num_images / aspect_ratio)))
else:
nrow = int(np.sqrt(num_images))
ncol = (num_images + nrow - 1) // nrow
elif nrow is None and ncol is not None:
nrow = (num_images + ncol - 1) // ncol
elif nrow is not None and ncol is None:
ncol = (num_images + nrow - 1) // nrow
else:
assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images'
if images[0].ndim == 2:
grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1]), dtype=images[0].dtype)
else:
grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype)
for i, img in enumerate(images):
row = i // ncol
col = i % ncol
grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img
return grid
def notes_on_image(img, notes=None):
img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if notes is not None:
img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def text_image(text, resolution=(512, 512), max_size=0.5, h_align="left", v_align="center"):
"""
Draw text on an image of the given resolution. The text is automatically wrapped
and scaled so that it fits completely within the image while preserving any explicit
line breaks and original spacing. Horizontal and vertical alignment can be controlled
via flags.
Parameters:
text (str): The input text. Newline characters and spacing are preserved.
resolution (tuple): The image resolution as (width, height).
max_size (float): The maximum font size.
h_align (str): Horizontal alignment. Options: "left", "center", "right".
v_align (str): Vertical alignment. Options: "top", "center", "bottom".
Returns:
numpy.ndarray: The resulting image (BGR format) with the text drawn.
"""
width, height = resolution
# Create a white background image
img = np.full((height, width, 3), 255, dtype=np.uint8)
# Set margins and compute available drawing area
margin = 10
avail_width = width - 2 * margin
avail_height = height - 2 * margin
# Choose OpenCV font and text thickness
font = cv2.FONT_HERSHEY_SIMPLEX
thickness = 1
# Ratio for additional spacing between lines (relative to the height of "A")
line_spacing_ratio = 0.5
def wrap_line(line, max_width, font, thickness, scale):
"""
Wrap a single line of text into multiple lines such that each line's
width (measured at the given scale) does not exceed max_width.
This function preserves the original spacing by splitting the line into tokens
(words and whitespace) using a regular expression.
Parameters:
line (str): The input text line.
max_width (int): Maximum allowed width in pixels.
font (int): OpenCV font identifier.
thickness (int): Text thickness.
scale (float): The current font scale.
Returns:
List[str]: A list of wrapped lines.
"""
# Split the line into tokens (words and whitespace), preserving spacing
tokens = re.split(r'(\s+)', line)
if not tokens:
return ['']
wrapped_lines = []
current_line = ""
for token in tokens:
candidate = current_line + token
candidate_width = cv2.getTextSize(candidate, font, scale, thickness)[0][0]
if candidate_width <= max_width:
current_line = candidate
else:
# If current_line is empty, the token itself is too wide;
# break the token character by character.
if current_line == "":
sub_token = ""
for char in token:
candidate_char = sub_token + char
if cv2.getTextSize(candidate_char, font, scale, thickness)[0][0] <= max_width:
sub_token = candidate_char
else:
if sub_token:
wrapped_lines.append(sub_token)
sub_token = char
current_line = sub_token
else:
wrapped_lines.append(current_line)
current_line = token
if current_line:
wrapped_lines.append(current_line)
return wrapped_lines
def compute_text_block(scale):
"""
Wrap the entire text (splitting at explicit newline characters) using the
provided scale, and then compute the overall width and height of the text block.
Returns:
wrapped_lines (List[str]): The list of wrapped lines.
block_width (int): Maximum width among the wrapped lines.
block_height (int): Total height of the text block including spacing.
sizes (List[tuple]): A list of (width, height) for each wrapped line.
spacing (int): The spacing between lines (computed from the scaled "A" height).
"""
# Split text by explicit newlines
input_lines = text.splitlines() if text else ['']
wrapped_lines = []
for line in input_lines:
wrapped = wrap_line(line, avail_width, font, thickness, scale)
wrapped_lines.extend(wrapped)
sizes = []
for line in wrapped_lines:
(text_size, _) = cv2.getTextSize(line, font, scale, thickness)
sizes.append(text_size) # (width, height)
block_width = max((w for w, h in sizes), default=0)
# Use the height of "A" (at the current scale) to compute line spacing
base_height = cv2.getTextSize("A", font, scale, thickness)[0][1]
spacing = int(line_spacing_ratio * base_height)
block_height = sum(h for w, h in sizes) + spacing * (len(sizes) - 1) if sizes else 0
return wrapped_lines, block_width, block_height, sizes, spacing
# Use binary search to find the maximum scale that allows the text block to fit
lo = 0.001
hi = max_size
eps = 0.001 # convergence threshold
best_scale = lo
best_result = None
while hi - lo > eps:
mid = (lo + hi) / 2
wrapped_lines, block_width, block_height, sizes, spacing = compute_text_block(mid)
# Ensure that both width and height constraints are met
if block_width <= avail_width and block_height <= avail_height:
best_scale = mid
best_result = (wrapped_lines, block_width, block_height, sizes, spacing)
lo = mid # try a larger scale
else:
hi = mid # reduce the scale
if best_result is None:
best_scale = 0.5
best_result = compute_text_block(best_scale)
wrapped_lines, block_width, block_height, sizes, spacing = best_result
# Compute starting y-coordinate based on vertical alignment flag
if v_align == "top":
y_top = margin
elif v_align == "center":
y_top = margin + (avail_height - block_height) // 2
elif v_align == "bottom":
y_top = margin + (avail_height - block_height)
else:
y_top = margin + (avail_height - block_height) // 2 # default to center if invalid flag
# For cv2.putText, the y coordinate represents the text baseline;
# so for the first line add its height.
y = y_top + (sizes[0][1] if sizes else 0)
# Draw each line with horizontal alignment based on the flag
for i, line in enumerate(wrapped_lines):
line_width, line_height = sizes[i]
if h_align == "left":
x = margin
elif h_align == "center":
x = margin + (avail_width - line_width) // 2
elif h_align == "right":
x = margin + (avail_width - line_width)
else:
x = margin # default to left if invalid flag
cv2.putText(img, line, (x, y), font, best_scale, (0, 0, 0), thickness, cv2.LINE_AA)
y += line_height + spacing
return img
def save_image_with_notes(img, path, notes=None):
"""
Save an image with notes.
"""
if isinstance(img, torch.Tensor):
img = img.cpu().numpy().transpose(1, 2, 0)
if img.dtype == np.float32 or img.dtype == np.float64:
img = np.clip(img * 255, 0, 255).astype(np.uint8)
img = notes_on_image(img, notes)
cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
# debug utils
def atol(x, y):
"""
Absolute tolerance.
"""
return torch.abs(x - y)
def rtol(x, y):
"""
Relative tolerance.
"""
return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12)
# print utils
def indent(s, n=4):
"""
Indent a string.
"""
lines = s.split('\n')
for i in range(1, len(lines)):
lines[i] = ' ' * n + lines[i]
return '\n'.join(lines)