Update qdrant_service.py
Browse files- qdrant_service.py +137 -20
qdrant_service.py
CHANGED
|
@@ -106,26 +106,52 @@ class QdrantVectorService:
|
|
| 106 |
else:
|
| 107 |
print("✓ Collection already exists")
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
def index_data(
|
| 110 |
self,
|
| 111 |
doc_id: str,
|
| 112 |
embedding: np.ndarray,
|
| 113 |
metadata: Dict[str, Any]
|
| 114 |
-
) -> str:
|
| 115 |
"""
|
| 116 |
Index data vào Qdrant
|
| 117 |
|
| 118 |
Args:
|
| 119 |
-
doc_id: ID của document (
|
| 120 |
embedding: Vector embedding từ Jina CLIP
|
| 121 |
metadata: Metadata (text, image_url, event_info, etc.)
|
| 122 |
|
| 123 |
Returns:
|
| 124 |
-
|
| 125 |
"""
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
| 129 |
|
| 130 |
# Ensure embedding là 1D array
|
| 131 |
if len(embedding.shape) > 1:
|
|
@@ -133,7 +159,7 @@ class QdrantVectorService:
|
|
| 133 |
|
| 134 |
# Create point
|
| 135 |
point = PointStruct(
|
| 136 |
-
id=
|
| 137 |
vector=embedding.tolist(),
|
| 138 |
payload=metadata
|
| 139 |
)
|
|
@@ -144,41 +170,53 @@ class QdrantVectorService:
|
|
| 144 |
points=[point]
|
| 145 |
)
|
| 146 |
|
| 147 |
-
return
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
def batch_index(
|
| 150 |
self,
|
| 151 |
doc_ids: List[str],
|
| 152 |
embeddings: np.ndarray,
|
| 153 |
metadata_list: List[Dict[str, Any]]
|
| 154 |
-
) -> List[str]:
|
| 155 |
"""
|
| 156 |
Batch index nhiều documents cùng lúc
|
| 157 |
|
| 158 |
Args:
|
| 159 |
-
doc_ids: List of document IDs
|
| 160 |
embeddings: Numpy array of embeddings (n_samples, embedding_dim)
|
| 161 |
metadata_list: List of metadata dicts
|
| 162 |
|
| 163 |
Returns:
|
| 164 |
-
List of
|
| 165 |
"""
|
| 166 |
points = []
|
|
|
|
| 167 |
|
| 168 |
for i, (doc_id, embedding, metadata) in enumerate(zip(doc_ids, embeddings, metadata_list)):
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
# Ensure embedding là 1D
|
| 173 |
if len(embedding.shape) > 1:
|
| 174 |
embedding = embedding.flatten()
|
| 175 |
|
| 176 |
points.append(PointStruct(
|
| 177 |
-
id=
|
| 178 |
vector=embedding.tolist(),
|
| 179 |
payload=metadata
|
| 180 |
))
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
# Batch upsert
|
| 183 |
self.client.upsert(
|
| 184 |
collection_name=self.collection_name,
|
|
@@ -186,7 +224,7 @@ class QdrantVectorService:
|
|
| 186 |
wait=True # Wait for indexing to complete
|
| 187 |
)
|
| 188 |
|
| 189 |
-
return
|
| 190 |
|
| 191 |
def search(
|
| 192 |
self,
|
|
@@ -233,11 +271,15 @@ class QdrantVectorService:
|
|
| 233 |
with_vectors=False # Không cần return vectors
|
| 234 |
)
|
| 235 |
|
| 236 |
-
# Format results
|
| 237 |
results = []
|
| 238 |
for hit in search_result:
|
|
|
|
|
|
|
|
|
|
| 239 |
results.append({
|
| 240 |
-
"id":
|
|
|
|
| 241 |
"confidence": float(hit.score), # Cosine similarity score
|
| 242 |
"metadata": hit.payload
|
| 243 |
})
|
|
@@ -297,20 +339,95 @@ class QdrantVectorService:
|
|
| 297 |
|
| 298 |
def delete_by_id(self, doc_id: str) -> bool:
|
| 299 |
"""
|
| 300 |
-
Delete document by ID
|
| 301 |
|
| 302 |
Args:
|
| 303 |
-
doc_id: Document ID to delete
|
| 304 |
|
| 305 |
Returns:
|
| 306 |
Success status
|
| 307 |
"""
|
|
|
|
|
|
|
|
|
|
| 308 |
self.client.delete(
|
| 309 |
collection_name=self.collection_name,
|
| 310 |
-
points_selector=[
|
| 311 |
)
|
| 312 |
return True
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
def get_collection_info(self) -> Dict[str, Any]:
|
| 315 |
"""
|
| 316 |
Lấy thông tin collection
|
|
|
|
| 106 |
else:
|
| 107 |
print("✓ Collection already exists")
|
| 108 |
|
| 109 |
+
def _convert_to_valid_id(self, doc_id: str) -> str:
|
| 110 |
+
"""
|
| 111 |
+
Convert bất kỳ string ID nào thành UUID hợp lệ cho Qdrant
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
doc_id: Original ID (có thể là MongoDB ObjectId, string, etc.)
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
UUID string hợp lệ
|
| 118 |
+
"""
|
| 119 |
+
if not doc_id:
|
| 120 |
+
return str(uuid.uuid4())
|
| 121 |
+
|
| 122 |
+
# Nếu đã là UUID hợp lệ, giữ nguyên
|
| 123 |
+
try:
|
| 124 |
+
uuid.UUID(doc_id)
|
| 125 |
+
return doc_id
|
| 126 |
+
except ValueError:
|
| 127 |
+
pass
|
| 128 |
+
|
| 129 |
+
# Convert string sang UUID deterministic (cùng input = cùng UUID)
|
| 130 |
+
# Sử dụng UUID v5 với namespace DNS
|
| 131 |
+
return str(uuid.uuid5(uuid.NAMESPACE_DNS, doc_id))
|
| 132 |
+
|
| 133 |
def index_data(
|
| 134 |
self,
|
| 135 |
doc_id: str,
|
| 136 |
embedding: np.ndarray,
|
| 137 |
metadata: Dict[str, Any]
|
| 138 |
+
) -> Dict[str, str]:
|
| 139 |
"""
|
| 140 |
Index data vào Qdrant
|
| 141 |
|
| 142 |
Args:
|
| 143 |
+
doc_id: ID của document (MongoDB ObjectId, string, etc.)
|
| 144 |
embedding: Vector embedding từ Jina CLIP
|
| 145 |
metadata: Metadata (text, image_url, event_info, etc.)
|
| 146 |
|
| 147 |
Returns:
|
| 148 |
+
Dict với original_id và qdrant_id
|
| 149 |
"""
|
| 150 |
+
# Convert ID thành UUID hợp lệ
|
| 151 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 152 |
+
|
| 153 |
+
# Lưu original ID vào metadata
|
| 154 |
+
metadata['original_id'] = doc_id
|
| 155 |
|
| 156 |
# Ensure embedding là 1D array
|
| 157 |
if len(embedding.shape) > 1:
|
|
|
|
| 159 |
|
| 160 |
# Create point
|
| 161 |
point = PointStruct(
|
| 162 |
+
id=qdrant_id,
|
| 163 |
vector=embedding.tolist(),
|
| 164 |
payload=metadata
|
| 165 |
)
|
|
|
|
| 170 |
points=[point]
|
| 171 |
)
|
| 172 |
|
| 173 |
+
return {
|
| 174 |
+
"original_id": doc_id,
|
| 175 |
+
"qdrant_id": qdrant_id
|
| 176 |
+
}
|
| 177 |
|
| 178 |
def batch_index(
|
| 179 |
self,
|
| 180 |
doc_ids: List[str],
|
| 181 |
embeddings: np.ndarray,
|
| 182 |
metadata_list: List[Dict[str, Any]]
|
| 183 |
+
) -> List[Dict[str, str]]:
|
| 184 |
"""
|
| 185 |
Batch index nhiều documents cùng lúc
|
| 186 |
|
| 187 |
Args:
|
| 188 |
+
doc_ids: List of document IDs (MongoDB ObjectId, string, etc.)
|
| 189 |
embeddings: Numpy array of embeddings (n_samples, embedding_dim)
|
| 190 |
metadata_list: List of metadata dicts
|
| 191 |
|
| 192 |
Returns:
|
| 193 |
+
List of dicts với original_id và qdrant_id
|
| 194 |
"""
|
| 195 |
points = []
|
| 196 |
+
id_mappings = []
|
| 197 |
|
| 198 |
for i, (doc_id, embedding, metadata) in enumerate(zip(doc_ids, embeddings, metadata_list)):
|
| 199 |
+
# Convert to valid UUID
|
| 200 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 201 |
+
|
| 202 |
+
# Lưu original ID vào metadata
|
| 203 |
+
metadata['original_id'] = doc_id
|
| 204 |
|
| 205 |
# Ensure embedding là 1D
|
| 206 |
if len(embedding.shape) > 1:
|
| 207 |
embedding = embedding.flatten()
|
| 208 |
|
| 209 |
points.append(PointStruct(
|
| 210 |
+
id=qdrant_id,
|
| 211 |
vector=embedding.tolist(),
|
| 212 |
payload=metadata
|
| 213 |
))
|
| 214 |
|
| 215 |
+
id_mappings.append({
|
| 216 |
+
"original_id": doc_id,
|
| 217 |
+
"qdrant_id": qdrant_id
|
| 218 |
+
})
|
| 219 |
+
|
| 220 |
# Batch upsert
|
| 221 |
self.client.upsert(
|
| 222 |
collection_name=self.collection_name,
|
|
|
|
| 224 |
wait=True # Wait for indexing to complete
|
| 225 |
)
|
| 226 |
|
| 227 |
+
return id_mappings
|
| 228 |
|
| 229 |
def search(
|
| 230 |
self,
|
|
|
|
| 271 |
with_vectors=False # Không cần return vectors
|
| 272 |
)
|
| 273 |
|
| 274 |
+
# Format results - trả về original_id thay vì UUID
|
| 275 |
results = []
|
| 276 |
for hit in search_result:
|
| 277 |
+
# Lấy original_id từ metadata (MongoDB ObjectId)
|
| 278 |
+
original_id = hit.payload.get('original_id', hit.id)
|
| 279 |
+
|
| 280 |
results.append({
|
| 281 |
+
"id": original_id, # Trả về MongoDB ObjectId
|
| 282 |
+
"qdrant_id": hit.id, # UUID trong Qdrant
|
| 283 |
"confidence": float(hit.score), # Cosine similarity score
|
| 284 |
"metadata": hit.payload
|
| 285 |
})
|
|
|
|
| 339 |
|
| 340 |
def delete_by_id(self, doc_id: str) -> bool:
|
| 341 |
"""
|
| 342 |
+
Delete document by ID (hỗ trợ cả MongoDB ObjectId và UUID)
|
| 343 |
|
| 344 |
Args:
|
| 345 |
+
doc_id: Document ID to delete (MongoDB ObjectId hoặc UUID)
|
| 346 |
|
| 347 |
Returns:
|
| 348 |
Success status
|
| 349 |
"""
|
| 350 |
+
# Convert to UUID nếu là MongoDB ObjectId
|
| 351 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 352 |
+
|
| 353 |
self.client.delete(
|
| 354 |
collection_name=self.collection_name,
|
| 355 |
+
points_selector=[qdrant_id]
|
| 356 |
)
|
| 357 |
return True
|
| 358 |
|
| 359 |
+
def get_by_id(self, doc_id: str) -> Optional[Dict[str, Any]]:
|
| 360 |
+
"""
|
| 361 |
+
Get document by ID (hỗ trợ cả MongoDB ObjectId và UUID)
|
| 362 |
+
|
| 363 |
+
Args:
|
| 364 |
+
doc_id: Document ID (MongoDB ObjectId hoặc UUID)
|
| 365 |
+
|
| 366 |
+
Returns:
|
| 367 |
+
Document data hoặc None nếu không tìm thấy
|
| 368 |
+
"""
|
| 369 |
+
# Convert to UUID nếu là MongoDB ObjectId
|
| 370 |
+
qdrant_id = self._convert_to_valid_id(doc_id)
|
| 371 |
+
|
| 372 |
+
try:
|
| 373 |
+
result = self.client.retrieve(
|
| 374 |
+
collection_name=self.collection_name,
|
| 375 |
+
ids=[qdrant_id],
|
| 376 |
+
with_payload=True,
|
| 377 |
+
with_vectors=False
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if result:
|
| 381 |
+
point = result[0]
|
| 382 |
+
original_id = point.payload.get('original_id', point.id)
|
| 383 |
+
return {
|
| 384 |
+
"id": original_id, # MongoDB ObjectId
|
| 385 |
+
"qdrant_id": point.id, # UUID trong Qdrant
|
| 386 |
+
"metadata": point.payload
|
| 387 |
+
}
|
| 388 |
+
return None
|
| 389 |
+
except Exception as e:
|
| 390 |
+
print(f"Error retrieving document: {e}")
|
| 391 |
+
return None
|
| 392 |
+
|
| 393 |
+
def search_by_metadata(
|
| 394 |
+
self,
|
| 395 |
+
filter_conditions: Dict,
|
| 396 |
+
limit: int = 100
|
| 397 |
+
) -> List[Dict[str, Any]]:
|
| 398 |
+
"""
|
| 399 |
+
Search documents by metadata conditions (không cần embedding)
|
| 400 |
+
|
| 401 |
+
Args:
|
| 402 |
+
filter_conditions: Qdrant filter conditions
|
| 403 |
+
limit: Maximum số results
|
| 404 |
+
|
| 405 |
+
Returns:
|
| 406 |
+
List of matching documents
|
| 407 |
+
"""
|
| 408 |
+
try:
|
| 409 |
+
result = self.client.scroll(
|
| 410 |
+
collection_name=self.collection_name,
|
| 411 |
+
scroll_filter=filter_conditions,
|
| 412 |
+
limit=limit,
|
| 413 |
+
with_payload=True,
|
| 414 |
+
with_vectors=False
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
documents = []
|
| 418 |
+
for point in result[0]: # result is tuple (points, next_page_offset)
|
| 419 |
+
original_id = point.payload.get('original_id', point.id)
|
| 420 |
+
documents.append({
|
| 421 |
+
"id": original_id, # MongoDB ObjectId
|
| 422 |
+
"qdrant_id": point.id, # UUID trong Qdrant
|
| 423 |
+
"metadata": point.payload
|
| 424 |
+
})
|
| 425 |
+
|
| 426 |
+
return documents
|
| 427 |
+
except Exception as e:
|
| 428 |
+
print(f"Error searching by metadata: {e}")
|
| 429 |
+
return []
|
| 430 |
+
|
| 431 |
def get_collection_info(self) -> Dict[str, Any]:
|
| 432 |
"""
|
| 433 |
Lấy thông tin collection
|