Spaces:
Sleeping
Sleeping
File size: 13,791 Bytes
48097f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# Original code from ProtMamba under Apache License 2.0.
#
# Modifications made by Niklas Schmidinger, Lisa Schneckenreiter and Sohvi Luukkonen
# - Extended to training of xlstm and transformer-based models
# - Predefined splits instead of on-the-fly creation
# - Option to overwrite config parameters from the command line
# - wandb logging
import argparse
import os
import torch
from omegaconf import OmegaConf
from transformers import TrainingArguments
from protxlstm.dataloaders import ProteinMemmapDataset, ProteinDataCollator
from protxlstm.models.xlstm import xLSTMConfig, xLSTMLMHeadModel
from protxlstm.models.llama import TransformerConfig, TransformerLMHeadModel
from protxlstm.trainer import ProtTrainer, EarlyStoppingCallback, get_last_checkpoint
from protxlstm.utils import (
AA_TO_ID,
compute_metrics,
is_zero_rank,
parse_override_args,
print_number_of_parameters,
print_zero_rank,
set_optimizer_and_scheduler,
setup_wandb,
load_model,
)
def run(config):
"""
Run training loop.
Args:
config (dict): dictionary with the configuration parameters.
"""
if config.model_type == 'llama':
pe_kwargs = {
'max_position_embeddings' : config["model"]["max_position_embeddings"],
'add_position_ids' : '1d',
}
elif config.model_type == 'mamba':
from protxlstm.models.mamba import MambaConfig, MambaLMHeadModelSafe, MambaLMHeadModelwithPosids, MambaLMHeadModelwith2DPosids
pe_kwargs = {
'max_position_embeddings' : config["model"]["max_position_embeddings"],
'max_seq_position_embeddings' : config["model"]["max_seq_position_embeddings"],
'add_position_ids' : config["model"]["add_position_ids"]
}
else:
position_embeddings = config["model"]["position_embeddings"]
assert position_embeddings in ["none", "abs_1d", "abs_2d", "rot_1d", "rot_2d"]
if position_embeddings != "none":
position_embeddings = position_embeddings.split("_")[-1]
pe_kwargs = {
'max_position_embeddings' : config["model"]["max_position_embeddings"],
'max_seq_position_embeddings' : config["model"]["max_seq_position_embeddings"],
'add_position_ids' : position_embeddings
}
# Setup WandB
wandb_run_name = setup_wandb(config)
# Load datasets
dataset_params = {
"msa_memmap_path": config["msa_memmap_path"],
"msa_memmap_meta_path": config["msa_memmap_meta_path"],
"sample": config["sample_sequences"],
"max_msa_len": config["max_msa_len"],
"reverse": False,
"seed": config["seed_sequence_sampling"],
"troubleshoot": False,
"fim_strategy": config["fim_strategy"],
"always_mask": config["always_mask"],
**pe_kwargs,
}
train_dataset = ProteinMemmapDataset(subset_path=config["train_set"], **dataset_params)
valid_dataset = ProteinMemmapDataset(subset_path=config["valid_set"], **dataset_params)
train_eval_dataset = ProteinMemmapDataset(subset_path=config["train_eval_set"], **dataset_params)
print(f'Train set size: {len(train_dataset)} Train eval set size: {len(train_eval_dataset)} Valid set size: {len(valid_dataset)}')
assert (
len(AA_TO_ID) == config["model"]["vocab_size"]
), f"Vocab size in the config file does not match the one in the code. I should be {len(AA_TO_ID)}"
# Create data collator for batched training
data_collator = ProteinDataCollator(max_sequence_length=config["max_msa_len"])
# Check datatypes
if config["dtype"] == "float32":
dtype = torch.float32
elif config["dtype"] == "bfloat16":
dtype = torch.bfloat16
else:
raise ValueError("dtype must be either float32 or bfloat16")
# Initialize model
if config.model_type == 'xlstm':
# Load model for finetuning
if config.finetune_model_path:
# These fields are updated in the config loaded from the checkpoint
config_update_kwargs = {
"mlstm_backend": config["model"]["mlstm_block"]["mlstm"]["backend"],
"mlstm_chunksize": config["model"]["mlstm_block"]["mlstm"]["chunk_size"],
"checkpoint_blocks": config["model"]["checkpoint_blocks"],
"rope_base_frequency": config["model"]["rope_base_frequency"]
}
model = load_model(
config.finetune_model_path,
model_class=xLSTMLMHeadModel,
device="cuda",
dtype=dtype,
**config_update_kwargs
)
else:
# Create new mode
xlstm_config = xLSTMConfig().init_from_dict(config["model"])
model = xLSTMLMHeadModel(xlstm_config)
elif config.model_type == 'mamba':
_mamba_model = {
"none": MambaLMHeadModelSafe,
"1d": MambaLMHeadModelwithPosids,
"2d": MambaLMHeadModelwith2DPosids,
}
Mamba = _mamba_model[config['model']["add_position_ids"]]
# Load model for finetuning
if config.finetune_model_path:
model = load_model(
config.finetune_model_path,
model_class=Mamba,
device="cuda",
dtype=dtype,
checkpoint_mixer=config["checkpoint_mixer"],
)
else:
# Create new mode
mamba_config = MambaConfig(d_model=config['model']["d_model"],
n_layer=config['model']["n_layer"],
vocab_size=config['model']["vocab_size"],
residual_in_fp32=config['model']["residual_in_fp32"])
model = Mamba(mamba_config, dtype=dtype, checkpoint_mixer=config['model']["checkpoint_mixer"])
elif config.model_type == 'llama':
llama_config = TransformerConfig(
d_model=config["model"]["d_model"],
n_layer=config["model"]["n_layer"],
n_heads=config["model"]["n_heads"],
n_kv_heads=config["model"]["n_kv_heads"],
bidirectional=config["model"]["bidirectional"],
hidden_dim=config["model"]["hidden_dim"],
multiple_of=config["model"]["multiple_of"],
norm_eps=config["model"]["norm_eps"],
max_length=config["model"]["max_length"],
vocab_size=config["model"]["vocab_size"],
dropout=config["model"]["dropout"],
max_position_embeddings=config["model"]["max_position_embeddings"],
rope_base_frequency=config["model"]["rope_base_frequency"],
)
model = TransformerLMHeadModel(llama_config)
else:
raise ValueError(f"Unsupported model_type: {config.model_type}. Expected 'xlstm', 'mamba', or 'llama'.")
# TODO: Improve what we want print
if is_zero_rank():
print_number_of_parameters(model)
print_zero_rank(f"dtype: {config['dtype']}")
print_zero_rank(f"Epochs: {config['num_epochs']}")
print_zero_rank(f"Batch size per GPU: {config['batch_size']}")
print_zero_rank(f"Gradient accumulation steps: {config['gradient_accumulation_steps']}")
eff_batch_size = config["batch_size"] * config["gradient_accumulation_steps"]
nr_gpus = torch.cuda.device_count()
print_zero_rank(f"GPUS: {nr_gpus}")
eff_batch_size *= nr_gpus
print_zero_rank(f"Effective batch size: {eff_batch_size}")
print_zero_rank(
f"Steps per training epoch: {len(train_dataset) // config['batch_size']}, eff. steps: {len(train_dataset) // eff_batch_size}"
)
print_zero_rank(f"Steps per evaluation epoch: {len(valid_dataset) // config['batch_size']}")
print_zero_rank(f"Max MSA length: {config['max_msa_len']}")
ev_epochs = round(
config["eval_steps"] * config["batch_size"] / len(train_dataset), 3
)
print_zero_rank(
f"Evaluation every {config['eval_steps']} steps, i.e. {ev_epochs} epochs. Effectively every {config['eval_steps']*config['gradient_accumulation_steps']} steps, i.e. {ev_epochs*config['gradient_accumulation_steps']} epochs."
)
if config.model_type == 'xlstm' and config["model"]["checkpoint_blocks"]:
print_zero_rank("Using gradient checkpointing")
if config["compute_only_fim_loss"]:
print_zero_rank("Computing only FIM loss for training")
# Training callbacks
es_callback = EarlyStoppingCallback(
train_path=config["output_dir"] + '/' + wandb_run_name, config=config
)
callbacks = [es_callback]
# Optimizer and Schedulers
optimizer, scheduler = set_optimizer_and_scheduler(
config,
len(train_dataset),
model.parameters()
)
# Find checkpoint if available
last_checkpoint = None
if config.finetune_model_path is None:
path = os.path.join(config["output_dir"], wandb_run_name)
if os.path.exists(path):
last_checkpoint = get_last_checkpoint(path)
if last_checkpoint is None:
print_zero_rank("No checkpoint found, starting training from scratch.")
else:
print_zero_rank(f"Resuming training from the last checkpoint: {last_checkpoint}")
# Create trainer
trainer = ProtTrainer(
model=model,
train_dataset=train_dataset,
eval_dataset={"valid": valid_dataset, "train": train_eval_dataset},
optimizers=(optimizer, scheduler),
args=TrainingArguments(
run_name=wandb_run_name,
local_rank=int(os.getenv('LOCAL_RANK', '0')),
learning_rate=config["learning_rate"],
num_train_epochs=config["num_epochs"],
per_device_train_batch_size=config["batch_size"],
per_device_eval_batch_size=config["batch_size"],
gradient_accumulation_steps=config["gradient_accumulation_steps"],
eval_accumulation_steps=config["eval_accumulation_steps"],
eval_strategy="steps",
max_grad_norm=config["max_grad_norm"],
bf16=config["dtype"] == "bfloat16",
dataloader_num_workers=32,
logging_steps=config["logging_steps"],
eval_steps=config["eval_steps"],
save_steps=config["save_steps"],
output_dir=config["output_dir"] + '/' + wandb_run_name,
logging_dir=config["output_dir"] + '/' + wandb_run_name,
report_to="wandb" if is_zero_rank() else None,
log_on_each_node=False,
overwrite_output_dir=False,
push_to_hub=False,
label_names=["labels"],
),
compute_only_fim_loss=config["compute_only_fim_loss"],
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=callbacks,
)
# Train model
while True:
if last_checkpoint is None and trainer.state.global_step == 0:
eval_results = trainer.evaluate()
print_zero_rank(
f">>> Initial validation perplexity: {eval_results['eval_valid_perplexity/batch']:.2f}"
)
else:
print_zero_rank(f"Resuming training from the last checkpoint: {last_checkpoint}")
# Train
trainer.train(resume_from_checkpoint=last_checkpoint)
# Break training when the number of epochs is reached
if (
not es_callback.should_restart
or trainer.state.epoch >= config["num_epochs"]
):
eval_results = trainer.evaluate()
print_zero_rank(
f">>> Final Perplexity: {eval_results['eval_valid_perplexity/batch']:.2f}"
)
break
# If the training was interrupted because of a loss spike, restart from the last checkpoint
last_checkpoint = es_callback.checkpoint_path
return trainer
if __name__ == "__main__":
# Default configuration file paths
default_model_config = "configs/xlstm_default_config.yaml"
default_train_config = "configs/train_default_config.yaml"
parser = argparse.ArgumentParser(
description="Train or finetune a model with the provided configuration."
)
parser.add_argument(
"--model_config_path",
type=str,
default=default_model_config,
help=f"Path to the model configuration file (default: {default_model_config})"
)
parser.add_argument(
"--train_config_path",
type=str,
default=default_train_config,
help=f"Path to the training and dataset configuration file (default: {default_train_config})"
)
parser.add_argument(
"overrides",
nargs=argparse.REMAINDER,
help="Override configuration values using key=value format.",
)
args = parser.parse_args()
# Check if the default config files exist, or raise an error
if not os.path.exists(args.model_config_path):
raise FileNotFoundError(f"Model config file not found: {args.model_config_path}")
if not os.path.exists(args.train_config_path):
raise FileNotFoundError(f"Train config file not found: {args.train_config_path}")
# Load the model and training configurations
model_config = OmegaConf.load(args.model_config_path)
train_config = OmegaConf.load(args.train_config_path)
# Merge the model and training configurations
config = OmegaConf.merge(model_config, train_config)
# Parse overrides
if args.overrides:
overrides = parse_override_args(args.overrides)
config.merge_with(OmegaConf.create(overrides))
# Run the training/finetuning process
run(config) |