Spaces:
Sleeping
Sleeping
File size: 22,709 Bytes
48097f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# Some of the objects in this file come from ProtMamba and mamba both under Apache License 2.0.
import json
import os
import numpy as np
import rich
import torch
from Bio import SeqIO
from omegaconf import DictConfig, OmegaConf
from torch.optim import AdamW
import wandb
from transformers import (
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
)
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
from transformers.utils.hub import cached_file
__all__ = ['AA_TO_ID', 'MASK_TO_ID', 'ID_TO_AA', 'load_model', 'encode_sequence', 'decode_sequence', 'clean_sequence', 'tokenizer',
'reorder_masked_sequence', 'load_sequences_from_msa_file', 'prepare_dataset_for_fim_generation',
'prepare_tokens', 'prepare_target', 'print_number_of_parameters', 'find_fim_indices',
'compute_metrics', 'compute_metrics_with_std', 'print_config', 'print_zero_rank', 'is_zero_rank']
# Constants
AA_TO_ID = {'<cls>': 0,
'<pad>': 1,
'<eos>': 2,
'<unk>': 3,
'L': 4,
'A': 5,
'G': 6,
'V': 7,
'S': 8,
'E': 9,
'R': 10,
'T': 11,
'I': 12,
'D': 13,
'P': 14,
'K': 15,
'Q': 16,
'N': 17,
'F': 18,
'Y': 19,
'M': 20,
'H': 21,
'W': 22,
'C': 23,
'X': 24,
'B': 25,
'U': 26,
'Z': 27,
'O': 28,
'.': 29,
'-': 30,
'<null_1>': 31,
'<mask>': 32}
MASK_TO_ID = {"<mask-1>": 33,
"<mask-2>": 34,
"<mask-3>": 35,
"<mask-4>": 36,
"<mask-5>": 37,}
AA_TO_ID.update(MASK_TO_ID)
ID_TO_AA = {v: k for k, v in AA_TO_ID.items()}
# Logging & prints
def setup_wandb(config):
# WandB setup
os.environ["WANDB_PROJECT"] = config["wandb_project"]
os.environ["WANDB_ENTITY"] = config["wandb_entity"]
os.environ["WANDB_MODE"] = config["wandb_mode"]
if config['model_type'] == 'xlstm':
pe = config['model']['add_position_ids']
pe = 'None' if pe == 'none' else 'AbsPE' if pe == 'abs_1d' else 'AbsPE2' if pe == 'abs_2d' else 'RoPE' if pe == 'rot_1d' else pe == 'rot_2d'
wandb_run_name = f"{config['model_type']}_l{config['model']['num_blocks']}_d{config['model']['embedding_dim']}_{pe}_s{config['max_msa_len']}_lr{config['learning_rate']}"
elif config['model_type'] == 'mamba':
pe = config['model']['add_position_ids']
pe = 'None' if pe == 'none' else 'AbsPE' if pe == '1d' else pe == '2d'
wandb_run_name = f"{config['model_type']}_l{config['model']['n_layer']}_d{config['model']['d_model']}_{pe}_s{config['max_msa_len']}_lr{config['learning_rate']}"
elif config['model_type'] == 'llama':
pe = 'RoPE'
wandb_run_name = f"{config['model_type']}_l{config['model']['n_layer']}_d{config['model']['d_model']}_dh{config['model']['hidden_dim']}_{prepare_dataset_for_fim_generation}_s{config['max_msa_len']}_lr{config['learning_rate']}_sched-{config['scheduler']}"
if config['name_prefix']:
wandb_run_name = str(config['name_prefix']) + '_' + wandb_run_name
if config['name_suffix']:
wandb_run_name = wandb_run_name + '_' + str(config['name_suffix'])
if is_zero_rank():
wandb.init(
project=config["wandb_project"],
entity=config["wandb_entity"],
mode=config["wandb_mode"],
name=wandb_run_name)
config_dict = OmegaConf.to_container(config, resolve=True)
wandb.config.update(config_dict)
return wandb_run_name
def is_zero_rank():
return int(os.getenv('LOCAL_RANK', '0')) == 0
def print_zero_rank(var):
if is_zero_rank():
print(var)
def print_number_of_parameters(model):
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
formatted_num_params = f"{num_params:_}"
print("Number of trainable parameters: ", formatted_num_params)
# Sequence tools
def encode_sequence(sequence):
"""Tokenize a sequence of amino acids and add a cls token at the beginning."""
tokenized_sequence = [AA_TO_ID[aa] if aa in AA_TO_ID else AA_TO_ID['<unk>'] for aa in sequence]
return [AA_TO_ID['<cls>']] + tokenized_sequence
def decode_sequence(sequence):
"""Decode a sequence of tokens."""
return "".join([ID_TO_AA[token] if token in ID_TO_AA else "<unk>" for token in sequence])
def clean_sequence(sequence):
"""Remove gaps and convert all residues to upper case."""
return sequence.replace("-", "").upper()
def tokenizer(sequence_list, concatenate=True):
"""Tokenize a collection of sequences. If the sequences are aligned, the gaps will be removed
and the insertions (lower case) will be promoted to upper case."""
# clean and encode all sequences
sequence_list = [encode_sequence(clean_sequence(sequence)) for sequence in sequence_list]
if concatenate:
# concatenate all sequences
sequences = np.concatenate(sequence_list)
# convert to tensor and add batch dimension
return torch.asarray(sequences, dtype=torch.int8)[None,:]
else:
return [torch.asarray(sequence, dtype=torch.int8) for sequence in sequence_list]
def reorder_masked_sequence(mask_seq, return_ids=False):
"""
Reorder a masked sequence to fill the masked positions with the tokens
that should be there but are positioned after the <eos> token.
"""
mask_seq = mask_seq.split("<cls>")[0]
try:
# Split the sequence and masks
seq, masks = mask_seq.split("<eos>")
except:
return mask_seq
full_seq = ""
ids_mask = []
# Iterate over each mask tag
for mm in ["<mask-1>", "<mask-2>", "<mask-3>", "<mask-4>", "<mask-5>","<mask-?>"]:
try:
# Split the sequence in before and after the mask tag
seq1, seq2 = seq.split(mm)
if mm=="<mask-1>":
# If the mask is the first one, add the sequence before the mask and update the masks
masks = masks.split("<mask-1>")[1]
full_seq += seq1
else:
# If the mask is not the first one, insert the mask between the two sequence parts
masks1, masks2 = masks.split(mm)
ids_mask += [(len(full_seq), len(full_seq)+len(masks1))]
full_seq += masks1 + seq1
# Update the masks
masks = masks2
# Update the sequence with the part after the mask
seq = seq2
except:
# If the mask is not found, add the remaining sequence
ids_mask += [(len(full_seq), len(full_seq)+len(masks))]
full_seq += masks + seq
break
if return_ids:
return full_seq, ids_mask
return full_seq
def load_sequences_from_msa_file(file_path):
"""Load a collection of sequences from an a3m file."""
with open(file_path, "r") as f:
sequences = [str(record.seq) for record in SeqIO.parse(f, "fasta")]
return sequences
def prepare_dataset_for_fim_generation(tokens, pos_ids):
"""
Function to transform the tokenized training dataset into a format that can be used for FIM generation.
Splits the input tokens and pos_ids into the FIM part (of the last sequence) and the context part (all
the previous sequences and the masked part of the last sequence).
Also returns a dictionary with the positions of the mask tokens in the FIM part.
"""
def find_mask_positions(tokens_fim):
"""
Function to find the positions of the mask tokens in the FIM part of the last sequence.
"""
bool_mask = None
inds_masks = []
for ind in MASK_TO_ID.values():
tmp_bool = tokens_fim[0].cpu().numpy() == ind
bool_mask = tmp_bool if bool_mask is None else bool_mask | tmp_bool
inds_masks += [ind]
return bool_mask, inds_masks
# find where the FIM part of the last sequence starts
start_last_fim = np.where(tokens[0].cpu().numpy() == AA_TO_ID["<eos>"])[0][-1]
start_next_seqs = np.where(tokens[0,start_last_fim+1:].cpu().numpy() == AA_TO_ID["<cls>"])[0]
end_last_fim = start_last_fim+ 1 +start_next_seqs[0] if len(start_next_seqs) > 0 else tokens.shape[1]
# split tokens and pos_ids into FIM part and context part
tokens_to_fim = tokens[:,:start_last_fim+1]
pos_ids_to_fim = pos_ids[:,:start_last_fim+1]
tokens_fim = tokens[:,start_last_fim+1:end_last_fim]
pos_ids_fim = pos_ids[:,start_last_fim+1:end_last_fim]
# find positions of mask tokens
bool_mask, inds_masks = find_mask_positions(tokens_fim)
masked_positions = pos_ids_fim[0,bool_mask]
mask_dict = {ind: int(pos) for ind, pos in zip(inds_masks, masked_positions)}
return tokens_to_fim, pos_ids_to_fim, tokens_fim, pos_ids_fim, mask_dict
# Metrics
def find_fim_indices(is_cls_tokens, is_eos_tokens):
"""Function to find the indices of the FIM tokens in the sequences.
"""
# add a cls token at the beginning
is_cls_tokens = torch.cat([torch.ones_like(is_cls_tokens[:, :1]), is_cls_tokens], dim=1)
is_eos_tokens = torch.cat([torch.zeros_like(is_eos_tokens[:, :1]), is_eos_tokens], dim=1)
# both eos and cls tokens
bol = is_cls_tokens | is_eos_tokens
tmp = torch.zeros_like(is_cls_tokens, dtype=torch.int)
tmp[torch.nonzero(is_cls_tokens, as_tuple=True)] = 1
tmp[torch.nonzero(is_eos_tokens, as_tuple=True)] = -1
bol1 = torch.clone(bol)
for batch_ind in range(tmp.size(0)):
tmp1 = tmp[batch_ind,bol[batch_ind]]
# find all positions where a 1 if preceeded by a -1
tmp1 = tmp1[:-1]*tmp1[1:]
# add the first element to make the sequence start with a 1
tmp1 = torch.cat([torch.ones_like(tmp1[:1]).to(tmp1.device), tmp1])
new_bol = tmp1<0
# bool array True only in the positions where a 1 is preceeded by a -1
bol1[batch_ind,bol[batch_ind]] = False if new_bol.size(0) == 0 else new_bol
cumulative_sum = torch.cumsum(bol1, dim=1)
# Use modulo operation to get the desired tensor
bol2 = cumulative_sum % 2 == 1
bol2[is_eos_tokens]= False
return bol2[:,1:]
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = torch.tensor(predictions).permute(0, 2, 1)
labels = torch.tensor(labels)
# shift labels to align them with predictions and remove last prediction to match the length
predictions = predictions[:, :, :-1].contiguous()
labels = labels[:, 1:].contiguous()
# compute unreduced elementwise loss
unreduced_loss = torch.nn.functional.cross_entropy(predictions, labels, reduction="none")
# compute reconstruction accuracy
reconstruction = (predictions.argmax(1) == labels)
# start and end tokens
is_cls_tokens = (labels == AA_TO_ID["<cls>"])
is_eos_tokens = (labels == AA_TO_ID["<eos>"])
# fill in the middle tokens
if False:
fim_tokens = torch.zeros(is_cls_tokens.size(0), is_cls_tokens.size(1), dtype=torch.bool)
in_mask_vector = torch.zeros(is_cls_tokens.size(0), dtype=torch.bool)
for j in range(is_cls_tokens.size(1)):
in_mask_vector = in_mask_vector & ~is_cls_tokens[:, j]
fim_tokens[:, j] = in_mask_vector
in_mask_vector = in_mask_vector | is_eos_tokens[:, j]
fim_tokens = find_fim_indices(is_cls_tokens, is_eos_tokens)
number_sequences = torch.cumsum(torch.cat([torch.zeros(is_cls_tokens.size(0),1, dtype=torch.int32), is_cls_tokens[:,:-1]],1), -1)
# fist, second and last sequence tokens
first_sequence_tokens = ((~fim_tokens & (labels < 33)) | fim_tokens) & (number_sequences == 0)
second_sequence_tokens = ((~fim_tokens & (labels < 33)) | fim_tokens) & (number_sequences == 1)
last_sequence_tokens = ((~fim_tokens & (labels < 33)) | fim_tokens) & (number_sequences == (number_sequences.max(1).values[:, None] - 1))
# end of mask tokens
end_of_masks = (fim_tokens & (labels > 33)) | is_cls_tokens | is_eos_tokens
return {
"loss/all": torch.mean(unreduced_loss).item(),
"loss/end_span": torch.mean(unreduced_loss[end_of_masks]).item(),
"perplexity/seq": torch.mean(torch.exp(torch.mean(unreduced_loss, dim=1))).item(),
"perplexity/end_span": torch.exp(torch.mean(unreduced_loss[end_of_masks])).item(),
"perplexity/batch": torch.exp(torch.mean(unreduced_loss)).item(),
"perplexity/first_seq": torch.exp(torch.mean(unreduced_loss[first_sequence_tokens])).item(),
"perplexity/second_seq": torch.exp(torch.mean(unreduced_loss[second_sequence_tokens])).item(),
"perplexity/last_seq": torch.exp(torch.mean(unreduced_loss[last_sequence_tokens])).item(),
"perplexity/fim": torch.exp(torch.mean(unreduced_loss[fim_tokens])).item(),
"reconstruction/all": torch.mean(reconstruction.float()).item(),
"reconstruction/end_span": torch.mean(reconstruction[end_of_masks].float()).item(),
"reconstruction/first_seq": torch.mean(reconstruction[first_sequence_tokens].float()).item(),
"reconstruction/second_seq": torch.mean(reconstruction[second_sequence_tokens].float()).item(),
"reconstruction/last_seq": torch.mean(reconstruction[last_sequence_tokens].float()).item(),
"reconstruction/fim": torch.mean(reconstruction[fim_tokens].float()).item(),
}
def compute_metrics_with_std(eval_pred):
predictions, labels = eval_pred
predictions = torch.tensor(predictions).permute(0, 2, 1)
labels = torch.tensor(labels)
# shift labels to align them with predictions and remove last prediction to match the length
predictions = predictions[:, :, :-1].contiguous()
labels = labels[:, 1:].contiguous()
# compute unreduced elementwise loss
unreduced_loss = torch.nn.functional.cross_entropy(predictions, labels, reduction="none")
# compute reconstruction accuracy
reconstruction = (predictions.argmax(1) == labels)
# start and end tokens
is_cls_tokens = (labels == AA_TO_ID["<cls>"])
is_eos_tokens = (labels == AA_TO_ID["<eos>"])
# fill in the middle tokens
if False:
fim_tokens = torch.zeros(is_cls_tokens.size(0), is_cls_tokens.size(1), dtype=torch.bool)
in_mask_vector = torch.zeros(is_cls_tokens.size(0), dtype=torch.bool)
for j in range(is_cls_tokens.size(1)):
in_mask_vector = in_mask_vector & ~is_cls_tokens[:, j]
fim_tokens[:, j] = in_mask_vector
in_mask_vector = in_mask_vector | is_eos_tokens[:, j]
fim_tokens = find_fim_indices(is_cls_tokens, is_eos_tokens)
number_sequences = torch.cumsum(torch.cat([torch.zeros(is_cls_tokens.size(0),1, dtype=torch.int32), is_cls_tokens[:,:-1]],1), -1)
# fist, second and last sequence tokens
first_sequence_tokens = ((~fim_tokens & (labels < 33)) | fim_tokens) & (number_sequences == 0)
second_sequence_tokens = ((~fim_tokens & (labels < 33)) | fim_tokens) & (number_sequences == 1)
last_sequence_tokens = ((~fim_tokens & (labels < 33)) | fim_tokens) & (number_sequences == (number_sequences.max(1).values[:, None] - 1))
# end of mask tokens
end_of_masks = (fim_tokens & (labels > 33)) | is_cls_tokens | is_eos_tokens
def perplexities_per_seq_for_subset(unreduced_loss, subset):
return torch.exp(torch.nanmean(torch.where(subset, unreduced_loss, torch.tensor(float('nan'))), dim=1))
return{
# Loss
"loss/all": torch.mean(unreduced_loss).item(),
"loss/std": torch.std(unreduced_loss).item(),
"loss/end_span": torch.mean(unreduced_loss[end_of_masks]).item(),
"loss/end_span_std": torch.std(unreduced_loss[end_of_masks]).item(),
# Perplexity of all tokens
"perplexity/batch": torch.exp(torch.mean(unreduced_loss)).item(),
"perplexity/batch_std": torch.exp(torch.std(unreduced_loss)).item(), # Fix
# Perplexity per sequence
"perplexity/seq": torch.mean(torch.exp(torch.mean(unreduced_loss, dim=1))).item(),
"perplexity/seq_std": torch.std(torch.exp(torch.mean(unreduced_loss, dim=1))).item(),
"perplexity/end_span": torch.exp(torch.mean(unreduced_loss[end_of_masks])).item(),
"perplexity/end_span_std": torch.std(torch.exp(unreduced_loss[end_of_masks])).item(),
"perplexity/first_seq": torch.mean(perplexities_per_seq_for_subset(unreduced_loss, first_sequence_tokens)).item(),
"perplexity/first_seq_std": torch.std(perplexities_per_seq_for_subset(unreduced_loss, first_sequence_tokens)).item(),
"perplexity/second_seq": torch.mean(perplexities_per_seq_for_subset(unreduced_loss, second_sequence_tokens)).item(),
"perplexity/second_seq_std": torch.std(perplexities_per_seq_for_subset(unreduced_loss, second_sequence_tokens)).item(),
"perplexity/last_seq": torch.mean(perplexities_per_seq_for_subset(unreduced_loss, last_sequence_tokens)).item(),
"perplexity/last_seq_std": torch.std(perplexities_per_seq_for_subset(unreduced_loss, last_sequence_tokens)).item(),
"perplexity/fim": torch.mean(perplexities_per_seq_for_subset(unreduced_loss, fim_tokens)).item(),
"perplexity/fim_std": torch.std(perplexities_per_seq_for_subset(unreduced_loss, fim_tokens)).item(),
"reconstruction/all": torch.mean(reconstruction.float()).item(),
"reconstruction/std": torch.std(reconstruction.float()).item(),
"reconstruction/end_span": torch.mean(reconstruction[end_of_masks].float()).item(),
"reconstruction/end_span_std": torch.std(reconstruction[end_of_masks].float()).item(),
"reconstruction/first_seq": torch.mean(reconstruction[first_sequence_tokens].float()).item(),
"reconstruction/first_seq_std": torch.std(reconstruction[first_sequence_tokens].float()).item(),
"reconstruction/second_seq": torch.mean(reconstruction[second_sequence_tokens].float()).item(),
"reconstruction/second_seq_std": torch.std(reconstruction[second_sequence_tokens].float()).item(),
"reconstruction/last_seq": torch.mean(reconstruction[last_sequence_tokens].float()).item(),
"reconstruction/last_seq_std": torch.std(reconstruction[last_sequence_tokens].float()).item(),
"reconstruction/fim": torch.mean(reconstruction[fim_tokens].float()).item(),
"reconstruction/fim_std": torch.std(reconstruction[fim_tokens].float()).item(),
}
# Others
def set_optimizer_and_scheduler(config, ntrain, parameters):
# Set optimizer
optimizer = AdamW(
parameters,
lr=config["learning_rate"],
betas=(config["beta1"], config["beta2"]),
weight_decay=config["weight_decay"],
)
eff_batch_size = config["batch_size"] * config["gradient_accumulation_steps"] * torch.cuda.device_count()
# Set scheduler
if config["scheduler"] == "cosine":
print_zero_rank("Using cosine scheduler")
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=config["warmup_steps"],
num_training_steps=config["num_epochs"] * ntrain // eff_batch_size,
)
if config["scheduler"] == "cosine-restarts":
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer,
num_warmup_steps=config["warmup_steps"],
num_training_steps=config["num_epochs"] * ntrain // eff_batch_size,
num_cycles=config["num_cycles"],
)
elif config["scheduler"] == "constant":
print_zero_rank("Using constant scheduler with warmup")
scheduler = get_constant_schedule_with_warmup(
optimizer, num_warmup_steps=config["warmup_steps"]
)
else:
raise ValueError("Scheduler must be either cosine or constant")
# Finetuning and no optimizer/scheduler reset
if config.finetune_model_path and not config.restart_optimizer_and_scheduler:
optimizer.load_state_dict(torch.load(config.finetune_model_path + "/optimizer.pt"))
for param_group in optimizer.param_groups:
param_group['initial_lr'] = config['learning_rate']
param_group['lr'] = config['learning_rate']
scheduler.load_state_dict(torch.load(config.finetune_model_path + "/scheduler.pt"))
scheduler.base_lrs = [config['learning_rate']]
scheduler._last_lr = [config['learning_rate']]
return optimizer, scheduler
def parse_override_args(override_args):
overrides = {}
for arg in override_args:
key, value = arg.split("=")
keys = key.split(".")
sub_dict = overrides
for sub_key in keys[:-1]:
if sub_key not in sub_dict:
sub_dict[sub_key] = {}
sub_dict = sub_dict[sub_key]
# Convert value to appropriate type
if value == 'True':
value = True
elif value == 'False':
value = False
elif value == 'None':
value = None
else:
try:
value = int(value)
except ValueError:
try:
value = float(value)
except ValueError:
pass
sub_dict[keys[-1]] = value
return overrides
def load_model(
model_path,
device,
model_class,
dtype=torch.bfloat16,
**kwargs
):
model = model_class.from_pretrained(
model_path, device=device, dtype=dtype, **kwargs
)
return model
# https://github.com/state-spaces/mamba/blob/main/mamba_ssm/utils/hf.py
def load_config_hf(model_name):
resolved_archive_file = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False)
return json.load(open(resolved_archive_file))
# https://github.com/state-spaces/mamba/blob/main/mamba_ssm/utils/hf.py
def load_state_dict_hf(model_name, device=None, dtype=None):
# If not fp32, then we don't want to load directly to the GPU
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
return torch.load(resolved_archive_file, map_location=mapped_device)
# Convert dtype before moving to GPU to save memory
if dtype is not None:
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
return state_dict |