Spaces:
Running
Running
Uploading Trashify box detection model v3 app.py with NMS post processing
Browse files- .gitattributes +1 -0
- .gradio/cached_examples/21/Image Output no filtering/fee2a07231fec8287609/image.webp +0 -0
- .gradio/cached_examples/21/log.csv +1 -0
- README.md +18 -6
- app.py +166 -19
- examples/trashify_example_1.jpeg +0 -0
- examples/trashify_example_2.jpeg +3 -0
- examples/trashify_example_3.jpeg +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/trashify_example_2.jpeg filter=lfs diff=lfs merge=lfs -text
|
.gradio/cached_examples/21/Image Output no filtering/fee2a07231fec8287609/image.webp
ADDED
|
.gradio/cached_examples/21/log.csv
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Image Output (no filtering),Text Output (no filtering),Image Output (with max score per class box filtering),Text Output (with max score per class box filtering),timestamp
|
README.md
CHANGED
|
@@ -1,13 +1,25 @@
|
|
| 1 |
---
|
| 2 |
-
title: Trashify V3
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Trashify Demo V3 🚮
|
| 3 |
+
emoji: 🗑️
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.40.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# 🚮 Trashify Object Detector Demo V3
|
| 14 |
+
|
| 15 |
+
Object detection demo to detect `trash`, `bin`, `hand`, `trash_arm`, `not_trash`, `not_bin`, `not_hand`.
|
| 16 |
+
|
| 17 |
+
Used as example for encouraging people to cleanup their local area.
|
| 18 |
+
|
| 19 |
+
If `trash`, `hand`, `bin` all detected = +1 point.
|
| 20 |
+
|
| 21 |
+
* V1 = model trained *without* data augmentation
|
| 22 |
+
* V2 = model trained *with* data augmentation
|
| 23 |
+
* V3 = model trained *with* data augmentation & NMS ([Non Maximum Suppression](https://paperswithcode.com/method/non-maximum-suppression)) post processing step
|
| 24 |
+
|
| 25 |
+
TK - finish the README.md + update with links to materials
|
app.py
CHANGED
|
@@ -1,29 +1,105 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from PIL import Image, ImageDraw
|
| 4 |
|
| 5 |
from transformers import AutoImageProcessor
|
| 6 |
from transformers import AutoModelForObjectDetection
|
| 7 |
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
model_save_path = "mrdbourke/
|
| 11 |
|
|
|
|
| 12 |
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
|
| 13 |
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
id2label = model.config.id2label
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
"bin": "green",
|
| 19 |
"trash": "blue",
|
| 20 |
-
"hand": "purple"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
}
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
def predict_on_image(image, conf_threshold
|
| 27 |
with torch.no_grad():
|
| 28 |
inputs = image_processor(images=[image], return_tensors="pt")
|
| 29 |
outputs = model(**inputs.to(device))
|
|
@@ -43,13 +119,37 @@ def predict_on_image(image, conf_threshold=0.25):
|
|
| 43 |
# Can return results as plotted on a PIL image (then display the image)
|
| 44 |
draw = ImageDraw.Draw(image)
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Create coordinates
|
| 48 |
x, y, x2, y2 = tuple(box.tolist())
|
| 49 |
|
| 50 |
# Get label_name
|
| 51 |
label_name = id2label[label.item()]
|
| 52 |
targ_color = color_dict[label_name]
|
|
|
|
| 53 |
|
| 54 |
# Draw the rectangle
|
| 55 |
draw.rectangle(xy=(x, y, x2, y2),
|
|
@@ -62,23 +162,70 @@ def predict_on_image(image, conf_threshold=0.25):
|
|
| 62 |
# Draw the text on the image
|
| 63 |
draw.text(xy=(x, y),
|
| 64 |
text=text_string_to_show,
|
| 65 |
-
fill="white"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# Remove the draw each time
|
| 68 |
del draw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
return image
|
| 71 |
|
|
|
|
| 72 |
demo = gr.Interface(
|
| 73 |
fn=predict_on_image,
|
| 74 |
inputs=[
|
| 75 |
-
gr.Image(type="pil", label="
|
| 76 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
| 77 |
],
|
| 78 |
-
outputs=
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 4 |
|
| 5 |
from transformers import AutoImageProcessor
|
| 6 |
from transformers import AutoModelForObjectDetection
|
| 7 |
|
| 8 |
+
# Note: Can load from Hugging Face or can load from local.
|
| 9 |
+
# You will have to replace {mrdbourke} for your own username if the model is on your Hugging Face account.
|
| 10 |
+
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector_with_data_aug"
|
| 11 |
|
| 12 |
+
# Load the model and preprocessor
|
| 13 |
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
|
| 14 |
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
|
| 15 |
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
model = model.to(device)
|
| 18 |
+
|
| 19 |
+
# Get the id2label dictionary from the model
|
| 20 |
id2label = model.config.id2label
|
| 21 |
+
|
| 22 |
+
# Set up a colour dictionary for plotting boxes with different colours
|
| 23 |
+
color_dict = {
|
| 24 |
"bin": "green",
|
| 25 |
"trash": "blue",
|
| 26 |
+
"hand": "purple",
|
| 27 |
+
"trash_arm": "yellow",
|
| 28 |
+
"not_trash": "red",
|
| 29 |
+
"not_bin": "red",
|
| 30 |
+
"not_hand": "red",
|
| 31 |
}
|
| 32 |
|
| 33 |
+
# Create helper functions for seeing if items from one list are in another
|
| 34 |
+
def any_in_list(list_a, list_b):
|
| 35 |
+
"Returns True if any item from list_a is in list_b, otherwise False."
|
| 36 |
+
return any(item in list_b for item in list_a)
|
| 37 |
+
|
| 38 |
+
def all_in_list(list_a, list_b):
|
| 39 |
+
"Returns True if all items from list_a are in list_b, otherwise False."
|
| 40 |
+
return all(item in list_b for item in list_a)
|
| 41 |
+
|
| 42 |
+
def filter_highest_scoring_box_per_class(boxes, labels, scores):
|
| 43 |
+
"""
|
| 44 |
+
Perform NMS (Non-max Supression) to only keep the top scoring box per class.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
boxes: tensor of shape (N, 4)
|
| 48 |
+
labels: tensor of shape (N,)
|
| 49 |
+
scores: tensor of shape (N,)
|
| 50 |
+
Returns:
|
| 51 |
+
boxes: tensor of shape (N, 4) filtered for max scoring item per class
|
| 52 |
+
labels: tensor of shape (N,) filtered for max scoring item per class
|
| 53 |
+
scores: tensor of shape (N,) filtered for max scoring item per class
|
| 54 |
+
"""
|
| 55 |
+
# Start with a blank keep mask (e.g. all False and then update the boxes to keep with True)
|
| 56 |
+
keep_mask = torch.zeros(len(boxes), dtype=torch.bool)
|
| 57 |
+
|
| 58 |
+
# For each unique class
|
| 59 |
+
for class_id in labels.unique():
|
| 60 |
+
# Get the indicies for the target class
|
| 61 |
+
class_mask = labels == class_id
|
| 62 |
+
|
| 63 |
+
# If any of the labels match the current class_id
|
| 64 |
+
if class_mask.any():
|
| 65 |
+
# Find the index of highest scoring box for this specific class
|
| 66 |
+
class_scores = scores[class_mask]
|
| 67 |
+
highest_score_idx = class_scores.argmax()
|
| 68 |
+
|
| 69 |
+
# Convert back to the original index
|
| 70 |
+
original_idx = torch.where(class_mask)[0][highest_score_idx]
|
| 71 |
+
|
| 72 |
+
# Update the index in the keep mask to keep the highest scoring box
|
| 73 |
+
keep_mask[original_idx] = True
|
| 74 |
+
|
| 75 |
+
return boxes[keep_mask], labels[keep_mask], scores[keep_mask]
|
| 76 |
+
|
| 77 |
+
def create_return_string(list_of_predicted_labels, target_items=["trash", "bin", "hand"]):
|
| 78 |
+
# Setup blank string to print out
|
| 79 |
+
return_string = ""
|
| 80 |
+
|
| 81 |
+
# If no items detected or trash, bin, hand not in list, return notification
|
| 82 |
+
if (len(list_of_predicted_labels) == 0) or not (any_in_list(list_a=target_items, list_b=list_of_predicted_labels)):
|
| 83 |
+
return_string = f"No trash, bin or hand detected at confidence threshold {conf_threshold}. Try another image or lowering the confidence threshold."
|
| 84 |
+
return return_string
|
| 85 |
+
|
| 86 |
+
# If there are some missing, print the ones which are missing
|
| 87 |
+
elif not all_in_list(list_a=target_items, list_b=list_of_predicted_labels):
|
| 88 |
+
missing_items = []
|
| 89 |
+
for item in target_items:
|
| 90 |
+
if item not in list_of_predicted_labels:
|
| 91 |
+
missing_items.append(item)
|
| 92 |
+
return_string = f"Detected the following items: {list_of_predicted_labels} (total: {len(list_of_predicted_labels)}). But missing the following in order to get +1: {missing_items}. If this is an error, try another image or altering the confidence threshold. Otherwise, the model may need to be updated with better data."
|
| 93 |
+
|
| 94 |
+
# If all 3 trash, bin, hand occur = + 1
|
| 95 |
+
if all_in_list(list_a=target_items, list_b=list_of_predicted_labels):
|
| 96 |
+
return_string = f"+1! Found the following items: {list_of_predicted_labels} (total: {len(list_of_predicted_labels)}), thank you for cleaning up the area!"
|
| 97 |
+
|
| 98 |
+
print(return_string)
|
| 99 |
+
|
| 100 |
+
return return_string
|
| 101 |
|
| 102 |
+
def predict_on_image(image, conf_threshold):
|
| 103 |
with torch.no_grad():
|
| 104 |
inputs = image_processor(images=[image], return_tensors="pt")
|
| 105 |
outputs = model(**inputs.to(device))
|
|
|
|
| 119 |
# Can return results as plotted on a PIL image (then display the image)
|
| 120 |
draw = ImageDraw.Draw(image)
|
| 121 |
|
| 122 |
+
# Create a copy of the image to draw on it for NMS
|
| 123 |
+
image_nms = image.copy()
|
| 124 |
+
draw_nms = ImageDraw.Draw(image_nms)
|
| 125 |
+
|
| 126 |
+
# Get a font from ImageFont
|
| 127 |
+
font = ImageFont.load_default(size=20)
|
| 128 |
+
|
| 129 |
+
# Get class names as text for print out
|
| 130 |
+
class_name_text_labels = []
|
| 131 |
+
|
| 132 |
+
# TK - update this for NMS
|
| 133 |
+
class_name_text_labels_nms = []
|
| 134 |
+
|
| 135 |
+
# Get original boxes, scores, labels
|
| 136 |
+
original_boxes = results["boxes"]
|
| 137 |
+
original_labels = results["labels"]
|
| 138 |
+
original_scores = results["scores"]
|
| 139 |
+
|
| 140 |
+
# Filter boxes and only keep 1x of each label with highest score
|
| 141 |
+
filtered_boxes, filtered_labels, filtered_scores = filter_highest_scoring_box_per_class(boxes=original_boxes,
|
| 142 |
+
labels=original_labels,
|
| 143 |
+
scores=original_scores)
|
| 144 |
+
# TODO: turn this into a function so it's cleaner?
|
| 145 |
+
for box, label, score in zip(original_boxes, original_labels, original_scores):
|
| 146 |
# Create coordinates
|
| 147 |
x, y, x2, y2 = tuple(box.tolist())
|
| 148 |
|
| 149 |
# Get label_name
|
| 150 |
label_name = id2label[label.item()]
|
| 151 |
targ_color = color_dict[label_name]
|
| 152 |
+
class_name_text_labels.append(label_name)
|
| 153 |
|
| 154 |
# Draw the rectangle
|
| 155 |
draw.rectangle(xy=(x, y, x2, y2),
|
|
|
|
| 162 |
# Draw the text on the image
|
| 163 |
draw.text(xy=(x, y),
|
| 164 |
text=text_string_to_show,
|
| 165 |
+
fill="white",
|
| 166 |
+
font=font)
|
| 167 |
+
|
| 168 |
+
# TODO: turn this into a function so it's cleaner?
|
| 169 |
+
for box, label, score in zip(filtered_boxes, filtered_labels, filtered_scores):
|
| 170 |
+
# Create coordinates
|
| 171 |
+
x, y, x2, y2 = tuple(box.tolist())
|
| 172 |
+
|
| 173 |
+
# Get label_name
|
| 174 |
+
label_name = id2label[label.item()]
|
| 175 |
+
targ_color = color_dict[label_name]
|
| 176 |
+
class_name_text_labels_nms.append(label_name)
|
| 177 |
+
|
| 178 |
+
# Draw the rectangle
|
| 179 |
+
draw_nms.rectangle(xy=(x, y, x2, y2),
|
| 180 |
+
outline=targ_color,
|
| 181 |
+
width=3)
|
| 182 |
+
|
| 183 |
+
# Create a text string to display
|
| 184 |
+
text_string_to_show = f"{label_name} ({round(score.item(), 3)})"
|
| 185 |
+
|
| 186 |
+
# Draw the text on the image
|
| 187 |
+
draw_nms.text(xy=(x, y),
|
| 188 |
+
text=text_string_to_show,
|
| 189 |
+
fill="white",
|
| 190 |
+
font=font)
|
| 191 |
+
|
| 192 |
|
| 193 |
# Remove the draw each time
|
| 194 |
del draw
|
| 195 |
+
del draw_nms
|
| 196 |
+
|
| 197 |
+
# Create the return string
|
| 198 |
+
return_string = create_return_string(list_of_predicted_labels=class_name_text_labels)
|
| 199 |
+
return_string_nms = create_return_string(list_of_predicted_labels=class_name_text_labels_nms)
|
| 200 |
|
| 201 |
+
return image, return_string, image_nms, return_string_nms
|
| 202 |
|
| 203 |
+
# Create the interface
|
| 204 |
demo = gr.Interface(
|
| 205 |
fn=predict_on_image,
|
| 206 |
inputs=[
|
| 207 |
+
gr.Image(type="pil", label="Target Image"),
|
| 208 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
| 209 |
],
|
| 210 |
+
outputs=[
|
| 211 |
+
gr.Image(type="pil", label="Image Output (no filtering)"),
|
| 212 |
+
gr.Text(label="Text Output (no filtering)"),
|
| 213 |
+
gr.Image(type="pil", label="Image Output (with max score per class box filtering)"),
|
| 214 |
+
gr.Text(label="Text Output (with max score per class box filtering)")
|
| 215 |
+
|
| 216 |
+
],
|
| 217 |
+
title="🚮 Trashify Object Detection Demo V3",
|
| 218 |
+
description="""Help clean up your local area! Upload an image and get +1 if there is all of the following items detected: trash, bin, hand.
|
| 219 |
+
Model in V3 has been trained with data augmentation and has an additional post-processing step to filter classes for only the highest scoring box of each class. (tk - add link to model).
|
| 220 |
+
""",
|
| 221 |
+
# Examples come in the form of a list of lists, where each inner list contains elements to prefill the `inputs` parameter with
|
| 222 |
+
examples=[
|
| 223 |
+
["examples/trashify_example_1.jpeg", 0.25],
|
| 224 |
+
["examples/trashify_example_2.jpeg", 0.25],
|
| 225 |
+
["examples/trashify_example_3.jpeg", 0.25]
|
| 226 |
+
],
|
| 227 |
+
cache_examples=True
|
| 228 |
)
|
| 229 |
|
| 230 |
+
# Launch the demo
|
| 231 |
+
demo.launch()
|
examples/trashify_example_1.jpeg
ADDED
|
examples/trashify_example_2.jpeg
ADDED
|
Git LFS Details
|
examples/trashify_example_3.jpeg
ADDED
|