Spaces:
Runtime error
Runtime error
server file and req
Browse files- README.md +29 -1
- app.py +164 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -10,4 +10,32 @@ pinned: false
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Segment Anything Model from Facebook
|
| 14 |
+
|
| 15 |
+
This is an implementation of the Segment Anything model from Facebook using PyTorch. The model can be used for image segmentation tasks to separate foreground objects from the background.
|
| 16 |
+
|
| 17 |
+
## How to Use the Model
|
| 18 |
+
|
| 19 |
+
We have implemented an API using FastAPI and Uvicorn to provide an easy-to-use interface for the Segment Anything model. The API allows users to send image files to the model and receive the segmented images in response.
|
| 20 |
+
|
| 21 |
+
To use the model, follow these steps:
|
| 22 |
+
|
| 23 |
+
1. Clone this repository to your local machine.
|
| 24 |
+
2. Install the required packages by running `pip install -r requirements.txt`.
|
| 25 |
+
3. Start the API server by running `python server.py`.
|
| 26 |
+
4. Send a POST request to `http://localhost:8000/PATH_USED_IN_CODE` with the image file attached as form data.
|
| 27 |
+
|
| 28 |
+
The response from the API will be a JSON object containing the segmented image as a base64-encoded string.
|
| 29 |
+
|
| 30 |
+
## How the Model Works
|
| 31 |
+
|
| 32 |
+
The Segment Anything model uses a fully convolutional neural network to perform image segmentation. The model takes an image as input and outputs a segmentation map, where each pixel in the map is assigned a label indicating whether it belongs to the foreground or background.
|
| 33 |
+
|
| 34 |
+
The model is trained on a large dataset of annotated images using a binary cross-entropy loss function. During training, the weights of the network are adjusted to minimize the difference between the predicted segmentation map and the ground truth segmentation map.
|
| 35 |
+
|
| 36 |
+
## References
|
| 37 |
+
|
| 38 |
+
For more information about the Segment Anything model and its implementation, please refer to the following resources:
|
| 39 |
+
|
| 40 |
+
- [Facebook Research Paper on Segment Anything Model](https://arxiv.org/abs/2103.16629)
|
| 41 |
+
- [PyTorch Implementation of the Segment Anything Model](https://github.com/facebookresearch/detectron2/tree/main/projects/SegmentAny)
|
app.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, status, File, Form, UploadFile
|
| 2 |
+
from fastapi.responses import HTMLResponse, FileResponse, JSONResponse
|
| 3 |
+
from starlette.responses import RedirectResponse
|
| 4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
|
| 6 |
+
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor
|
| 7 |
+
import numpy as np
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from base64 import b64encode, b64decode
|
| 11 |
+
|
| 12 |
+
def pil_image_to_base64(image):
|
| 13 |
+
buffered = BytesIO()
|
| 14 |
+
image.save(buffered, format="PNG")
|
| 15 |
+
img_str = b64encode(buffered.getvalue()).decode("utf-8")
|
| 16 |
+
return img_str
|
| 17 |
+
|
| 18 |
+
sam_checkpoint = "sam_vit_b_01ec64.pth" # "sam_vit_l_0b3195.pth" or "sam_vit_h_4b8939.pth"
|
| 19 |
+
model_type = "vit_b" # "vit_l" or "vit_h"
|
| 20 |
+
device = "cpu" # "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
print("Loading model")
|
| 23 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device)
|
| 24 |
+
print("Finishing loading")
|
| 25 |
+
predictor = SamPredictor(sam)
|
| 26 |
+
|
| 27 |
+
app = FastAPI(debug=True)
|
| 28 |
+
origins = [
|
| 29 |
+
"http://localhost",
|
| 30 |
+
"http://localhost:8000",
|
| 31 |
+
"http://127.0.0.1",
|
| 32 |
+
"http://127.0.0.1:8000",
|
| 33 |
+
"http://localhost:5173",
|
| 34 |
+
"http://127.0.0.1:5173",
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
app.add_middleware(
|
| 38 |
+
CORSMiddleware,
|
| 39 |
+
allow_origins=origins,
|
| 40 |
+
allow_credentials=True,
|
| 41 |
+
allow_methods=["*"],
|
| 42 |
+
allow_headers=["*"]
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
input_point = []
|
| 46 |
+
input_label = []
|
| 47 |
+
masks = []
|
| 48 |
+
mask_input = [None]
|
| 49 |
+
|
| 50 |
+
@app.post("/image")
|
| 51 |
+
async def process_images(
|
| 52 |
+
image: UploadFile = File(...)
|
| 53 |
+
):
|
| 54 |
+
global input_point, input_label, mask_input, masks
|
| 55 |
+
input_point = []
|
| 56 |
+
input_label = []
|
| 57 |
+
masks = []
|
| 58 |
+
# mask_input = [None]
|
| 59 |
+
|
| 60 |
+
# Read the image and mask data as bytes
|
| 61 |
+
image_data = await image.read()
|
| 62 |
+
|
| 63 |
+
image_data = BytesIO(image_data)
|
| 64 |
+
img = np.array(Image.open(image_data))
|
| 65 |
+
print("get image", img.shape)
|
| 66 |
+
# produce an image embedding by calling SamPredictor.set_image
|
| 67 |
+
predictor.set_image(img[:,:,:-1])
|
| 68 |
+
print("finish setting image")
|
| 69 |
+
# Return a JSON response
|
| 70 |
+
return JSONResponse(
|
| 71 |
+
content={
|
| 72 |
+
"message": "Images received successfully",
|
| 73 |
+
},
|
| 74 |
+
status_code=200,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@app.post("/undo")
|
| 79 |
+
async def process_images():
|
| 80 |
+
global input_point, input_label, mask_input
|
| 81 |
+
input_point.pop()
|
| 82 |
+
input_label.pop()
|
| 83 |
+
masks.pop()
|
| 84 |
+
# mask_input.pop()
|
| 85 |
+
|
| 86 |
+
return JSONResponse(
|
| 87 |
+
content={
|
| 88 |
+
"message": "Clear successfully",
|
| 89 |
+
},
|
| 90 |
+
status_code=200,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
@app.post("/click")
|
| 94 |
+
async def click_images(
|
| 95 |
+
x: int = Form(...), # horizontal
|
| 96 |
+
y: int = Form(...) # vertical
|
| 97 |
+
):
|
| 98 |
+
global input_point, input_label, mask_input
|
| 99 |
+
input_point.append([x, y])
|
| 100 |
+
input_label.append(1)
|
| 101 |
+
print("get click", x, y)
|
| 102 |
+
print("input_point", input_point)
|
| 103 |
+
print("input_label", input_label)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
masks_, scores_, logits_ = predictor.predict(
|
| 107 |
+
point_coords=np.array([input_point[-1]]),
|
| 108 |
+
point_labels=np.array([input_label[-1]]),
|
| 109 |
+
# mask_input=mask_input[-1],
|
| 110 |
+
multimask_output=True, # SAM outputs 3 masks, we choose the one with highest score
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# mask_input.append(logits[np.argmax(scores), :, :][None, :, :])
|
| 114 |
+
masks.append(masks_[np.argmax(scores_), :, :])
|
| 115 |
+
res = np.zeros(masks[0].shape)
|
| 116 |
+
for mask in masks:
|
| 117 |
+
res = np.logical_or(res, mask)
|
| 118 |
+
res = Image.fromarray(res)
|
| 119 |
+
# res.save("res.png")
|
| 120 |
+
|
| 121 |
+
# Return a JSON response
|
| 122 |
+
return JSONResponse(
|
| 123 |
+
content={
|
| 124 |
+
"masks": pil_image_to_base64(res),
|
| 125 |
+
"message": "Images processed successfully"
|
| 126 |
+
},
|
| 127 |
+
status_code=200,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
@app.post("/rect")
|
| 131 |
+
async def rect_images(
|
| 132 |
+
start_x: int = Form(...), # horizontal
|
| 133 |
+
start_y: int = Form(...), # vertical
|
| 134 |
+
end_x: int = Form(...), # horizontal
|
| 135 |
+
end_y: int = Form(...) # vertical
|
| 136 |
+
):
|
| 137 |
+
masks_, _, _ = predictor.predict(
|
| 138 |
+
point_coords=None,
|
| 139 |
+
point_labels=None,
|
| 140 |
+
box=np.array([[start_x, start_y, end_x, end_y]]),
|
| 141 |
+
multimask_output=False
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
res = Image.fromarray(masks_[0])
|
| 145 |
+
# res.save("res.png")
|
| 146 |
+
|
| 147 |
+
# Return a JSON response
|
| 148 |
+
return JSONResponse(
|
| 149 |
+
content={
|
| 150 |
+
"masks": pil_image_to_base64(res),
|
| 151 |
+
"message": "Images processed successfully"
|
| 152 |
+
},
|
| 153 |
+
status_code=200,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
@app.get('/')
|
| 157 |
+
def home():
|
| 158 |
+
return 'This is API for uses Segment-Anything Model from facebook. You can use it to segment anything.'
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
import uvicorn
|
| 162 |
+
|
| 163 |
+
if __name__ == '__main__':
|
| 164 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
numpy
|
| 3 |
+
uvicorn
|
| 4 |
+
torch
|
| 5 |
+
torchvision
|
| 6 |
+
git+https://github.com/facebookresearch/segment-anything.git
|