Spaces:
Sleeping
Sleeping
Update reid.py
Browse files
reid.py
CHANGED
|
@@ -1,145 +1,39 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
import numpy as np
|
| 6 |
import cv2
|
| 7 |
import torch
|
| 8 |
import timm
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
-
from typing import Dict,
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
from datetime import datetime, timedelta
|
| 14 |
-
from pathlib import Path
|
| 15 |
-
import warnings
|
| 16 |
-
import json
|
| 17 |
-
warnings.filterwarnings('ignore')
|
| 18 |
|
| 19 |
-
from database import DogDatabase
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
'VERBOSE': True, # Master switch for debugging
|
| 24 |
-
'LOG_THRESHOLDS': True, # Log threshold decisions
|
| 25 |
-
'LOG_QUALITY': True, # Log feature quality scores
|
| 26 |
-
'LOG_ADAPTIVE': True, # Log adaptive threshold calculations
|
| 27 |
-
'LOG_STORAGE': True, # Log storage reduction
|
| 28 |
-
'LOG_AGGREGATION': True, # Log mean embedding stats
|
| 29 |
-
'LOG_MATCHES': True, # Log matching decisions
|
| 30 |
-
'SAVE_DEBUG_FILE': True, # Save debug info to file
|
| 31 |
-
'DEBUG_FILE_PATH': 'reid_debug.json'
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
-
@dataclass
|
| 35 |
-
class DebugInfo:
|
| 36 |
-
"""Stores debug information for analysis"""
|
| 37 |
-
timestamp: datetime = field(default_factory=datetime.now)
|
| 38 |
-
frame_num: int = 0
|
| 39 |
-
operation: str = ""
|
| 40 |
-
details: Dict = field(default_factory=dict)
|
| 41 |
-
|
| 42 |
-
def to_dict(self):
|
| 43 |
-
return {
|
| 44 |
-
'timestamp': self.timestamp.isoformat(),
|
| 45 |
-
'frame': self.frame_num,
|
| 46 |
-
'operation': self.operation,
|
| 47 |
-
'details': self.details
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
@dataclass
|
| 51 |
-
class DogFeatures:
|
| 52 |
-
features: np.ndarray
|
| 53 |
-
bbox: List[float] = field(default_factory=list)
|
| 54 |
-
confidence: float = 0.5
|
| 55 |
-
quality: float = 0.5 # ADDED: Recommendation #7
|
| 56 |
-
frame_num: int = 0
|
| 57 |
-
timestamp: datetime = field(default_factory=datetime.now)
|
| 58 |
-
image: Optional[np.ndarray] = None
|
| 59 |
-
angle: str = "unknown"
|
| 60 |
-
distance: str = "medium"
|
| 61 |
|
| 62 |
-
|
| 63 |
-
quality_components: Dict = field(default_factory=dict) # Breakdown of quality score
|
| 64 |
-
|
| 65 |
-
@dataclass
|
| 66 |
-
class SleepingTrack:
|
| 67 |
-
dog_id: int
|
| 68 |
-
last_position: Tuple[float, float]
|
| 69 |
-
last_seen: datetime
|
| 70 |
-
last_frame: int
|
| 71 |
-
features_list: List[DogFeatures]
|
| 72 |
-
avg_embedding: np.ndarray
|
| 73 |
-
|
| 74 |
-
@dataclass
|
| 75 |
-
class ActiveDog:
|
| 76 |
-
temp_id: int
|
| 77 |
-
dog_id: int
|
| 78 |
-
features_list: List[DogFeatures]
|
| 79 |
-
last_frame_seen: int
|
| 80 |
-
last_position: Tuple[float, float]
|
| 81 |
-
|
| 82 |
-
# Debug tracking
|
| 83 |
-
match_history: List[float] = field(default_factory=list) # Similarity scores over time
|
| 84 |
-
threshold_history: List[float] = field(default_factory=list) # Applied thresholds
|
| 85 |
-
|
| 86 |
-
class SQLiteEnhancedReID:
|
| 87 |
-
"""ReID with Recommendations 1-9 and comprehensive debugging"""
|
| 88 |
-
|
| 89 |
-
def __init__(self, device: str = 'cuda', db_path: str = 'dog_monitoring.db'):
|
| 90 |
self.device = device if torch.cuda.is_available() else 'cpu'
|
| 91 |
-
self.db = DogDatabase(db_path)
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
self.
|
| 95 |
-
self.database_threshold = 0.55 # STRICTER for database (was incorrectly lower)
|
| 96 |
-
self.sleeping_threshold = 0.30 # More lenient for sleeping tracks
|
| 97 |
|
| 98 |
-
|
| 99 |
-
self.
|
| 100 |
-
self.sleeping_frame_timeout = 180
|
| 101 |
-
self.max_sleeping_tracks = 30
|
| 102 |
-
|
| 103 |
-
self.active_dogs: Dict[int, ActiveDog] = {}
|
| 104 |
-
self.session_dogs = {}
|
| 105 |
-
self.temp_id_features = {}
|
| 106 |
self.next_temp_id = 1
|
| 107 |
self.current_frame = 0
|
| 108 |
self.current_video_source = "unknown"
|
| 109 |
|
| 110 |
-
|
| 111 |
-
self.
|
| 112 |
-
self._initialize_megadescriptor()
|
| 113 |
-
|
| 114 |
-
# Debug system
|
| 115 |
-
self.debug_log = []
|
| 116 |
-
self.debug_stats = defaultdict(list)
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# Aggregation tracking
|
| 123 |
-
self.aggregation_stats = {
|
| 124 |
-
'mean_computations': 0,
|
| 125 |
-
'individual_comparisons': 0,
|
| 126 |
-
'mean_effectiveness': []
|
| 127 |
-
}
|
| 128 |
-
|
| 129 |
-
print("="*80)
|
| 130 |
-
print("Enhanced ReID with Debugging Initialized")
|
| 131 |
-
print("="*80)
|
| 132 |
-
print(f"Device: {self.device}")
|
| 133 |
-
print(f"Database: {db_path}")
|
| 134 |
-
print(f"Registered dogs: {len(self.db_embeddings_cache)}")
|
| 135 |
-
print("\n📊 RECOMMENDATION #1: Fixed Thresholds")
|
| 136 |
-
print(f" Session threshold: {self.session_threshold:.2f}")
|
| 137 |
-
print(f" Database threshold: {self.database_threshold:.2f} (STRICTER)")
|
| 138 |
-
print(f" Sleeping threshold: {self.sleeping_threshold:.2f}")
|
| 139 |
-
print(f" ✅ Database > Session: {self.database_threshold > self.session_threshold}")
|
| 140 |
-
print("="*80)
|
| 141 |
-
|
| 142 |
-
def _initialize_megadescriptor(self):
|
| 143 |
try:
|
| 144 |
self.model = timm.create_model(
|
| 145 |
'hf-hub:BVRA/MegaDescriptor-L-384',
|
|
@@ -153,36 +47,32 @@ class SQLiteEnhancedReID:
|
|
| 153 |
mean=[0.5, 0.5, 0.5],
|
| 154 |
std=[0.5, 0.5, 0.5]
|
| 155 |
)
|
| 156 |
-
print("
|
| 157 |
except Exception as e:
|
| 158 |
-
print(f"
|
| 159 |
self.model = None
|
| 160 |
-
|
| 161 |
-
def
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
dog_id = dog['dog_id']
|
| 167 |
-
features = self.db.get_features(dog_id, limit=20)
|
| 168 |
-
|
| 169 |
-
if features:
|
| 170 |
-
embeddings = [f['resnet_features'] for f in features]
|
| 171 |
-
self.db_embeddings_cache[dog_id] = {
|
| 172 |
-
'name': dog['name'] or f"Dog #{dog_id}",
|
| 173 |
-
'embeddings': embeddings,
|
| 174 |
-
'total_sightings': dog['total_sightings']
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
print(f"📁 Loaded {len(self.db_embeddings_cache)} dogs from database")
|
| 178 |
-
|
| 179 |
def set_video_source(self, video_path: str):
|
|
|
|
| 180 |
self.current_video_source = video_path
|
| 181 |
-
|
| 182 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
if image is None or image.size == 0 or self.model is None:
|
| 184 |
return None
|
| 185 |
-
|
| 186 |
try:
|
| 187 |
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 188 |
from PIL import Image
|
|
@@ -191,788 +81,87 @@ class SQLiteEnhancedReID:
|
|
| 191 |
|
| 192 |
with torch.no_grad():
|
| 193 |
features = self.model(img_tensor)
|
| 194 |
-
|
| 195 |
features = features.squeeze().cpu().numpy()
|
| 196 |
features = features / (np.linalg.norm(features) + 1e-7)
|
| 197 |
|
| 198 |
-
|
| 199 |
-
if np.allclose(features, 1.0) or np.allclose(features, 0.0):
|
| 200 |
-
print(f"⚠️ WARNING: Degenerate features at frame {self.current_frame}")
|
| 201 |
-
return None
|
| 202 |
-
|
| 203 |
-
h, w = image.shape[:2]
|
| 204 |
-
aspect_ratio = w / h if h > 0 else 1.0
|
| 205 |
-
angle = "side" if 0.8 < aspect_ratio < 1.5 else "front" if aspect_ratio > 1.5 else "angled"
|
| 206 |
-
distance = "close" if max(h, w) > 200 else "far" if max(h, w) < 80 else "medium"
|
| 207 |
-
|
| 208 |
-
return DogFeatures(
|
| 209 |
-
features=features,
|
| 210 |
-
bbox=bbox if bbox else [0, 0, 100, 100],
|
| 211 |
-
frame_num=self.current_frame,
|
| 212 |
-
timestamp=datetime.now(),
|
| 213 |
-
image=image.copy(),
|
| 214 |
-
angle=angle,
|
| 215 |
-
distance=distance
|
| 216 |
-
)
|
| 217 |
except Exception as e:
|
| 218 |
-
print(f"
|
| 219 |
return None
|
| 220 |
-
|
| 221 |
-
def compute_feature_quality(self, image: np.ndarray, bbox: List[float],
|
| 222 |
-
confidence: float) -> Tuple[float, Dict]:
|
| 223 |
-
"""
|
| 224 |
-
RECOMMENDATION #7: Feature quality scoring with detailed breakdown
|
| 225 |
-
Returns: (quality_score, components_dict)
|
| 226 |
-
"""
|
| 227 |
-
components = {}
|
| 228 |
-
score = 0.0
|
| 229 |
-
|
| 230 |
-
# Factor 1: Detection confidence (30%)
|
| 231 |
-
conf_score = confidence
|
| 232 |
-
components['detection_confidence'] = conf_score
|
| 233 |
-
score += 0.3 * conf_score
|
| 234 |
-
|
| 235 |
-
# Factor 2: Bounding box size (20%)
|
| 236 |
-
h, w = image.shape[:2]
|
| 237 |
-
bbox_area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
|
| 238 |
-
frame_area = h * w
|
| 239 |
-
size_ratio = bbox_area / frame_area if frame_area > 0 else 0
|
| 240 |
-
size_score = min(1.0, size_ratio / 0.15) # Ideal is 15% of frame
|
| 241 |
-
components['bbox_size'] = size_score
|
| 242 |
-
score += 0.2 * size_score
|
| 243 |
-
|
| 244 |
-
# Factor 3: Image sharpness using Laplacian variance (30%)
|
| 245 |
-
try:
|
| 246 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 247 |
-
laplacian_var = cv2.Laplacian(gray, cv2.CV_64F).var()
|
| 248 |
-
sharp_score = min(1.0, laplacian_var / 500)
|
| 249 |
-
components['sharpness'] = sharp_score
|
| 250 |
-
score += 0.3 * sharp_score
|
| 251 |
-
except:
|
| 252 |
-
components['sharpness'] = 0.5
|
| 253 |
-
score += 0.15
|
| 254 |
-
|
| 255 |
-
# Factor 4: Centrality in frame (20%)
|
| 256 |
-
center_x = (bbox[0] + bbox[2]) / 2
|
| 257 |
-
center_y = (bbox[1] + bbox[3]) / 2
|
| 258 |
-
frame_center_x = w / 2
|
| 259 |
-
frame_center_y = h / 2
|
| 260 |
-
dist_from_center = np.sqrt((center_x - frame_center_x)**2 + (center_y - frame_center_y)**2)
|
| 261 |
-
max_dist = np.sqrt((w/2)**2 + (h/2)**2)
|
| 262 |
-
center_score = 1.0 - (dist_from_center / max_dist) if max_dist > 0 else 0.5
|
| 263 |
-
components['centrality'] = center_score
|
| 264 |
-
score += 0.2 * center_score
|
| 265 |
-
|
| 266 |
-
# Log quality if debugging enabled
|
| 267 |
-
if DEBUG_CONFIG['LOG_QUALITY']:
|
| 268 |
-
self.debug_log.append(DebugInfo(
|
| 269 |
-
frame_num=self.current_frame,
|
| 270 |
-
operation="quality_scoring",
|
| 271 |
-
details={
|
| 272 |
-
'total_score': score,
|
| 273 |
-
'components': components,
|
| 274 |
-
'bbox_area_px': bbox_area,
|
| 275 |
-
'frame_coverage': f"{size_ratio*100:.1f}%"
|
| 276 |
-
}
|
| 277 |
-
))
|
| 278 |
-
|
| 279 |
-
return score, components
|
| 280 |
-
|
| 281 |
-
def check_sleeping_tracks(self, features: np.ndarray, position: Tuple[float, float]) -> Optional[int]:
|
| 282 |
-
"""Check sleeping tracks with detailed debugging"""
|
| 283 |
-
if not self.sleeping_tracks:
|
| 284 |
-
return None
|
| 285 |
-
|
| 286 |
-
current_time = datetime.now()
|
| 287 |
-
best_match = None
|
| 288 |
-
best_score = 0
|
| 289 |
-
all_scores = []
|
| 290 |
-
|
| 291 |
-
# Clean old sleeping tracks
|
| 292 |
-
old_count = len(self.sleeping_tracks)
|
| 293 |
-
self.sleeping_tracks = [
|
| 294 |
-
st for st in self.sleeping_tracks
|
| 295 |
-
if (current_time - st.last_seen).total_seconds() < self.sleeping_track_timeout
|
| 296 |
-
and (self.current_frame - st.last_frame) < self.sleeping_frame_timeout
|
| 297 |
-
]
|
| 298 |
-
|
| 299 |
-
if old_count != len(self.sleeping_tracks):
|
| 300 |
-
print(f"🧹 Cleaned {old_count - len(self.sleeping_tracks)} old sleeping tracks")
|
| 301 |
-
|
| 302 |
-
for sleeping_track in self.sleeping_tracks:
|
| 303 |
-
time_diff = (current_time - sleeping_track.last_seen).total_seconds()
|
| 304 |
-
frame_diff = self.current_frame - sleeping_track.last_frame
|
| 305 |
-
|
| 306 |
-
# Temporal bonuses
|
| 307 |
-
time_bonus = 0.08 if time_diff < 5 else 0.05 if time_diff < 15 else 0.02
|
| 308 |
-
frame_bonus = 0.05 if frame_diff < 30 else 0.02 if frame_diff < 90 else 0
|
| 309 |
-
|
| 310 |
-
# Spatial bonus
|
| 311 |
-
last_x, last_y = sleeping_track.last_position
|
| 312 |
-
curr_x, curr_y = position
|
| 313 |
-
spatial_distance = np.sqrt((curr_x - last_x)**2 + (curr_y - last_y)**2)
|
| 314 |
-
spatial_bonus = 0.06 if spatial_distance < 80 else 0.03 if spatial_distance < 150 else 0
|
| 315 |
-
|
| 316 |
-
# Feature similarity
|
| 317 |
-
similarity = cosine_similarity(
|
| 318 |
-
features.reshape(1, -1),
|
| 319 |
-
sleeping_track.avg_embedding.reshape(1, -1)
|
| 320 |
-
)[0, 0]
|
| 321 |
-
|
| 322 |
-
final_score = similarity + time_bonus + frame_bonus + spatial_bonus
|
| 323 |
-
|
| 324 |
-
all_scores.append({
|
| 325 |
-
'dog_id': sleeping_track.dog_id,
|
| 326 |
-
'similarity': similarity,
|
| 327 |
-
'time_bonus': time_bonus,
|
| 328 |
-
'frame_bonus': frame_bonus,
|
| 329 |
-
'spatial_bonus': spatial_bonus,
|
| 330 |
-
'final_score': final_score,
|
| 331 |
-
'time_gap': time_diff,
|
| 332 |
-
'frame_gap': frame_diff,
|
| 333 |
-
'spatial_dist': spatial_distance
|
| 334 |
-
})
|
| 335 |
-
|
| 336 |
-
if final_score > best_score and final_score >= self.sleeping_threshold:
|
| 337 |
-
best_score = final_score
|
| 338 |
-
best_match = sleeping_track.dog_id
|
| 339 |
-
|
| 340 |
-
# Debug logging
|
| 341 |
-
if DEBUG_CONFIG['VERBOSE'] and all_scores:
|
| 342 |
-
print(f"\n🛏️ Sleeping Track Check (Frame {self.current_frame}):")
|
| 343 |
-
for s in sorted(all_scores, key=lambda x: x['final_score'], reverse=True)[:3]:
|
| 344 |
-
print(f" Dog {s['dog_id']}: score={s['final_score']:.3f} "
|
| 345 |
-
f"(sim={s['similarity']:.3f}, time_gap={s['time_gap']:.1f}s, "
|
| 346 |
-
f"spatial={s['spatial_dist']:.1f}px)")
|
| 347 |
-
|
| 348 |
-
if best_match:
|
| 349 |
-
print(f" ✅ RE-ENTRY: Dog ID {best_match} (score: {best_score:.3f})")
|
| 350 |
-
self.sleeping_tracks = [st for st in self.sleeping_tracks if st.dog_id != best_match]
|
| 351 |
-
|
| 352 |
-
return best_match
|
| 353 |
-
|
| 354 |
-
def check_database(self, features: np.ndarray) -> Optional[int]:
|
| 355 |
-
"""Database matching with debugging"""
|
| 356 |
-
if not self.db_embeddings_cache:
|
| 357 |
-
return None
|
| 358 |
-
|
| 359 |
-
best_match = None
|
| 360 |
-
best_score = 0
|
| 361 |
-
all_scores = []
|
| 362 |
-
|
| 363 |
-
for dog_id, dog_data in self.db_embeddings_cache.items():
|
| 364 |
-
embeddings = dog_data['embeddings']
|
| 365 |
-
similarities = []
|
| 366 |
-
|
| 367 |
-
for emb in embeddings:
|
| 368 |
-
sim = cosine_similarity(
|
| 369 |
-
features.reshape(1, -1),
|
| 370 |
-
emb.reshape(1, -1)
|
| 371 |
-
)[0, 0]
|
| 372 |
-
similarities.append(sim)
|
| 373 |
-
|
| 374 |
-
max_sim = max(similarities) if similarities else 0
|
| 375 |
-
avg_sim = np.mean(similarities) if similarities else 0
|
| 376 |
-
|
| 377 |
-
all_scores.append({
|
| 378 |
-
'dog_id': dog_id,
|
| 379 |
-
'name': dog_data['name'],
|
| 380 |
-
'max_sim': max_sim,
|
| 381 |
-
'avg_sim': avg_sim,
|
| 382 |
-
'num_embeddings': len(embeddings)
|
| 383 |
-
})
|
| 384 |
-
|
| 385 |
-
if max_sim > best_score:
|
| 386 |
-
best_score = max_sim
|
| 387 |
-
best_match = dog_id
|
| 388 |
-
|
| 389 |
-
# Debug output
|
| 390 |
-
if DEBUG_CONFIG['LOG_MATCHES'] and all_scores:
|
| 391 |
-
all_scores.sort(key=lambda x: x['max_sim'], reverse=True)
|
| 392 |
-
print(f"\n🗄️ Database Matching (threshold={self.database_threshold:.2f}):")
|
| 393 |
-
for s in all_scores[:3]:
|
| 394 |
-
status = "✅" if s['max_sim'] >= self.database_threshold else "❌"
|
| 395 |
-
print(f" {status} {s['name']}: max={s['max_sim']:.3f}, "
|
| 396 |
-
f"avg={s['avg_sim']:.3f} ({s['num_embeddings']} samples)")
|
| 397 |
-
|
| 398 |
-
if best_score >= self.database_threshold:
|
| 399 |
-
dog_name = self.db_embeddings_cache[best_match]['name']
|
| 400 |
-
print(f" 🎯 DATABASE MATCH: {dog_name} (ID: {best_match}, score: {best_score:.3f})")
|
| 401 |
-
return best_match
|
| 402 |
-
|
| 403 |
-
return None
|
| 404 |
-
|
| 405 |
-
def compute_mean_embedding(self, features_list: List[DogFeatures]) -> np.ndarray:
|
| 406 |
-
"""
|
| 407 |
-
RECOMMENDATION #9: Mean embedding aggregation with quality weighting
|
| 408 |
-
"""
|
| 409 |
-
if not features_list:
|
| 410 |
-
return None
|
| 411 |
-
|
| 412 |
-
# Extract embeddings and qualities
|
| 413 |
-
embeddings = []
|
| 414 |
-
qualities = []
|
| 415 |
-
|
| 416 |
-
for feat in features_list[-20:]: # Use last 20
|
| 417 |
-
embeddings.append(feat.features)
|
| 418 |
-
qualities.append(feat.quality)
|
| 419 |
-
|
| 420 |
-
embeddings = np.array(embeddings)
|
| 421 |
-
qualities = np.array(qualities)
|
| 422 |
|
| 423 |
-
|
| 424 |
-
weights = np.array([]) # ✅ ensure weights always exists
|
| 425 |
-
if np.sum(qualities) > 0:
|
| 426 |
-
weights = qualities / np.sum(qualities)
|
| 427 |
-
mean_embedding = np.average(embeddings, axis=0, weights=weights)
|
| 428 |
-
else:
|
| 429 |
-
mean_embedding = np.mean(embeddings, axis=0)
|
| 430 |
-
|
| 431 |
-
# Normalize
|
| 432 |
-
mean_embedding = mean_embedding / (np.linalg.norm(mean_embedding) + 1e-7)
|
| 433 |
-
|
| 434 |
-
# Track aggregation stats
|
| 435 |
-
self.aggregation_stats['mean_computations'] += 1
|
| 436 |
-
|
| 437 |
-
if DEBUG_CONFIG['LOG_AGGREGATION']:
|
| 438 |
-
variance = np.var(embeddings, axis=0).mean()
|
| 439 |
-
self.debug_log.append(DebugInfo(
|
| 440 |
-
frame_num=self.current_frame,
|
| 441 |
-
operation="mean_aggregation",
|
| 442 |
-
details={
|
| 443 |
-
'num_embeddings': len(embeddings),
|
| 444 |
-
'avg_quality': float(np.mean(qualities)) if qualities.size > 0 else 0,
|
| 445 |
-
'embedding_variance': float(variance),
|
| 446 |
-
'weight_range': [float(weights.min()), float(weights.max())] if weights.size > 0 else [0, 0]
|
| 447 |
-
}
|
| 448 |
-
))
|
| 449 |
-
|
| 450 |
-
return mean_embedding
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
def check_session(self, features: np.ndarray, threshold: float = None) -> Optional[int]:
|
| 454 |
-
"""
|
| 455 |
-
Session matching with hierarchical search and mean aggregation
|
| 456 |
-
"""
|
| 457 |
-
if threshold is None:
|
| 458 |
-
threshold = self.session_threshold
|
| 459 |
-
|
| 460 |
-
# Stage 1: Active IDs (seen in last 30 frames)
|
| 461 |
-
active_ids = [
|
| 462 |
-
temp_id for temp_id in self.temp_id_features.keys()
|
| 463 |
-
if temp_id in self.active_dogs and
|
| 464 |
-
(self.current_frame - self.active_dogs[temp_id].last_frame_seen) < 30
|
| 465 |
-
]
|
| 466 |
-
|
| 467 |
-
# Stage 2: Recently active (30-90 frames)
|
| 468 |
-
recent_ids = [
|
| 469 |
-
temp_id for temp_id in self.temp_id_features.keys()
|
| 470 |
-
if temp_id in self.active_dogs and
|
| 471 |
-
30 <= (self.current_frame - self.active_dogs[temp_id].last_frame_seen) < 90
|
| 472 |
-
]
|
| 473 |
-
|
| 474 |
-
# Stage 3: Inactive IDs
|
| 475 |
-
all_ids = set(self.temp_id_features.keys())
|
| 476 |
-
inactive_ids = list(all_ids - set(active_ids) - set(recent_ids))
|
| 477 |
-
|
| 478 |
-
# Search with different thresholds
|
| 479 |
-
stages = [
|
| 480 |
-
('active', active_ids, threshold),
|
| 481 |
-
('recent', recent_ids, threshold + 0.05),
|
| 482 |
-
('inactive', inactive_ids, threshold + 0.10)
|
| 483 |
-
]
|
| 484 |
-
|
| 485 |
-
best_match = None
|
| 486 |
-
best_score = -1.0
|
| 487 |
-
best_stage = None
|
| 488 |
-
|
| 489 |
-
for stage_name, ids, stage_threshold in stages:
|
| 490 |
-
if not ids:
|
| 491 |
-
continue
|
| 492 |
-
|
| 493 |
-
for temp_id in ids:
|
| 494 |
-
# RECOMMENDATION #9: Use mean embedding
|
| 495 |
-
mean_emb = self.compute_mean_embedding(self.temp_id_features[temp_id])
|
| 496 |
-
if mean_emb is None:
|
| 497 |
-
continue
|
| 498 |
-
|
| 499 |
-
similarity = cosine_similarity(
|
| 500 |
-
features.reshape(1, -1),
|
| 501 |
-
mean_emb.reshape(1, -1)
|
| 502 |
-
)[0, 0]
|
| 503 |
-
|
| 504 |
-
if similarity > best_score:
|
| 505 |
-
best_score = similarity
|
| 506 |
-
best_match = temp_id if similarity >= stage_threshold else None
|
| 507 |
-
best_stage = stage_name
|
| 508 |
-
|
| 509 |
-
# Debug output
|
| 510 |
-
if DEBUG_CONFIG['LOG_MATCHES']:
|
| 511 |
-
print(f"\n🔍 Session Matching (Frame {self.current_frame}):")
|
| 512 |
-
print(f" Searching: {len(active_ids)} active, {len(recent_ids)} recent, "
|
| 513 |
-
f"{len(inactive_ids)} inactive")
|
| 514 |
-
if best_match:
|
| 515 |
-
print(f" ✅ MATCH: Temp ID {best_match} (stage={best_stage}, "
|
| 516 |
-
f"score={best_score:.3f}, threshold={threshold:.2f})")
|
| 517 |
-
else:
|
| 518 |
-
print(f" ❌ No match (best_score={best_score:.3f} < threshold={threshold:.2f})")
|
| 519 |
-
|
| 520 |
-
return best_match
|
| 521 |
-
|
| 522 |
-
def compute_adaptive_threshold(self, track_metadata: Dict) -> float:
|
| 523 |
-
"""
|
| 524 |
-
RECOMMENDATION #6: Adaptive thresholding based on DeepSORT confidence
|
| 525 |
-
"""
|
| 526 |
-
base_threshold = self.session_threshold
|
| 527 |
-
adjustment = 0.0
|
| 528 |
-
|
| 529 |
-
hits = track_metadata.get('deepsort_hits', 0)
|
| 530 |
-
age = track_metadata.get('deepsort_age', 0)
|
| 531 |
-
time_since_update = track_metadata.get('frames_since_update', 0)
|
| 532 |
-
|
| 533 |
-
# Calculate confidence level
|
| 534 |
-
if hits > 10 and time_since_update == 0:
|
| 535 |
-
confidence_level = 'high'
|
| 536 |
-
adjustment = -0.20 # More lenient
|
| 537 |
-
elif hits > 5 and time_since_update == 0:
|
| 538 |
-
confidence_level = 'medium'
|
| 539 |
-
adjustment = -0.10
|
| 540 |
-
elif hits > 2 and time_since_update < 5:
|
| 541 |
-
confidence_level = 'low'
|
| 542 |
-
adjustment = -0.05
|
| 543 |
-
else:
|
| 544 |
-
confidence_level = 'none'
|
| 545 |
-
adjustment = 0.0
|
| 546 |
-
|
| 547 |
-
effective_threshold = max(0.15, base_threshold + adjustment)
|
| 548 |
-
|
| 549 |
-
# Debug logging
|
| 550 |
-
if DEBUG_CONFIG['LOG_ADAPTIVE']:
|
| 551 |
-
self.debug_log.append(DebugInfo(
|
| 552 |
-
frame_num=self.current_frame,
|
| 553 |
-
operation="adaptive_threshold",
|
| 554 |
-
details={
|
| 555 |
-
'base_threshold': base_threshold,
|
| 556 |
-
'adjustment': adjustment,
|
| 557 |
-
'effective_threshold': effective_threshold,
|
| 558 |
-
'confidence_level': confidence_level,
|
| 559 |
-
'deepsort_hits': hits,
|
| 560 |
-
'deepsort_age': age,
|
| 561 |
-
'time_since_update': time_since_update
|
| 562 |
-
}
|
| 563 |
-
))
|
| 564 |
-
|
| 565 |
-
if DEBUG_CONFIG['VERBOSE'] and adjustment != 0:
|
| 566 |
-
print(f" 🎯 Adaptive Threshold: {base_threshold:.2f} → {effective_threshold:.2f} "
|
| 567 |
-
f"(confidence={confidence_level}, hits={hits})")
|
| 568 |
-
|
| 569 |
-
return effective_threshold
|
| 570 |
-
|
| 571 |
-
def smart_feature_storage(self, temp_id: int, new_feature: DogFeatures) -> bool:
|
| 572 |
-
"""
|
| 573 |
-
RECOMMENDATION #8: Reduce storage to 20 best features
|
| 574 |
-
Returns: True if feature was stored, False if rejected
|
| 575 |
-
"""
|
| 576 |
-
features_list = self.temp_id_features[temp_id]
|
| 577 |
-
|
| 578 |
-
# Always store if we have less than 5
|
| 579 |
-
if len(features_list) < 5:
|
| 580 |
-
features_list.append(new_feature)
|
| 581 |
-
self.feature_reduction_stats['stored_initial'] += 1
|
| 582 |
-
return True
|
| 583 |
-
|
| 584 |
-
# Check quality threshold
|
| 585 |
-
if new_feature.quality < 0.4:
|
| 586 |
-
self.feature_reduction_stats['rejected_quality'] += 1
|
| 587 |
-
if DEBUG_CONFIG['LOG_STORAGE']:
|
| 588 |
-
print(f" ❌ Feature rejected: quality {new_feature.quality:.2f} < 0.4")
|
| 589 |
-
return False
|
| 590 |
-
|
| 591 |
-
# Check diversity (avoid redundant features)
|
| 592 |
-
recent_features = features_list[-5:]
|
| 593 |
-
max_similarity = max([
|
| 594 |
-
np.dot(new_feature.features, f.features)
|
| 595 |
-
for f in recent_features
|
| 596 |
-
])
|
| 597 |
-
|
| 598 |
-
if max_similarity > 0.95:
|
| 599 |
-
self.feature_reduction_stats['rejected_redundant'] += 1
|
| 600 |
-
if DEBUG_CONFIG['LOG_STORAGE']:
|
| 601 |
-
print(f" ❌ Feature rejected: too similar ({max_similarity:.3f}) to existing")
|
| 602 |
-
return False
|
| 603 |
-
|
| 604 |
-
# Add the feature
|
| 605 |
-
features_list.append(new_feature)
|
| 606 |
-
self.feature_reduction_stats['stored_diverse'] += 1
|
| 607 |
-
|
| 608 |
-
# RECOMMENDATION #8: Keep only top 20 by quality
|
| 609 |
-
if len(features_list) > 20:
|
| 610 |
-
# Sort by quality
|
| 611 |
-
features_list.sort(key=lambda x: x.quality, reverse=True)
|
| 612 |
-
removed_count = len(features_list) - 20
|
| 613 |
-
features_list = features_list[:20]
|
| 614 |
-
self.temp_id_features[temp_id] = features_list
|
| 615 |
-
self.feature_reduction_stats['pruned'] += removed_count
|
| 616 |
-
|
| 617 |
-
if DEBUG_CONFIG['LOG_STORAGE']:
|
| 618 |
-
qualities = [f.quality for f in features_list]
|
| 619 |
-
print(f" 🗑️ Pruned {removed_count} features. Quality range: "
|
| 620 |
-
f"[{min(qualities):.2f}-{max(qualities):.2f}]")
|
| 621 |
-
|
| 622 |
-
return True
|
| 623 |
-
|
| 624 |
-
def match_or_register_all(self, track, deepsort_hits=0, deepsort_age=0,
|
| 625 |
-
frames_since_update=0) -> Dict:
|
| 626 |
"""
|
| 627 |
-
|
|
|
|
|
|
|
| 628 |
"""
|
| 629 |
self.current_frame += 1
|
| 630 |
-
self._auto_move_inactive_to_sleeping()
|
| 631 |
|
| 632 |
-
# Get
|
| 633 |
detection = None
|
| 634 |
for det in reversed(track.detections[-3:]):
|
| 635 |
if det.image_crop is not None:
|
| 636 |
detection = det
|
| 637 |
break
|
| 638 |
-
|
| 639 |
-
if detection is None or detection.image_crop is None:
|
| 640 |
-
return self._empty_result()
|
| 641 |
-
|
| 642 |
-
# Extract features
|
| 643 |
-
features_obj = self.extract_features(
|
| 644 |
-
detection.image_crop,
|
| 645 |
-
detection.bbox if hasattr(detection, 'bbox') else None
|
| 646 |
-
)
|
| 647 |
-
|
| 648 |
-
if features_obj is None:
|
| 649 |
-
return self._empty_result()
|
| 650 |
-
|
| 651 |
-
# RECOMMENDATION #7: Compute quality score
|
| 652 |
-
features_obj.quality, features_obj.quality_components = self.compute_feature_quality(
|
| 653 |
-
detection.image_crop,
|
| 654 |
-
features_obj.bbox,
|
| 655 |
-
detection.confidence if hasattr(detection, 'confidence') else 0.5
|
| 656 |
-
)
|
| 657 |
-
|
| 658 |
-
features = features_obj.features
|
| 659 |
-
bbox = features_obj.bbox
|
| 660 |
-
position = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
|
| 661 |
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
print(f"\n{'='*60}")
|
| 665 |
-
print(f"Frame {self.current_frame} | Track {track.track_id}")
|
| 666 |
-
print(f"Feature quality: {features_obj.quality:.2f} | "
|
| 667 |
-
f"DeepSORT: hits={deepsort_hits}, age={deepsort_age}, "
|
| 668 |
-
f"since_update={frames_since_update}")
|
| 669 |
-
|
| 670 |
-
# STAGE 1: Check sleeping tracks
|
| 671 |
-
sleeping_dog_id = self.check_sleeping_tracks(features, position)
|
| 672 |
-
if sleeping_dog_id:
|
| 673 |
-
temp_id = self._get_temp_id_for_dog(sleeping_dog_id)
|
| 674 |
-
if temp_id not in self.temp_id_features:
|
| 675 |
-
self.temp_id_features[temp_id] = []
|
| 676 |
-
self.smart_feature_storage(temp_id, features_obj)
|
| 677 |
-
self._update_active_dog(temp_id, sleeping_dog_id, features_obj, position)
|
| 678 |
-
self._save_to_database(sleeping_dog_id, features_obj, detection)
|
| 679 |
-
return self._create_result(temp_id, sleeping_dog_id, 1.0, True, "sleeping_reentry")
|
| 680 |
-
|
| 681 |
-
# STAGE 2: Check database
|
| 682 |
-
db_dog_id = self.check_database(features)
|
| 683 |
|
| 684 |
-
#
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
'
|
| 688 |
-
'frames_since_update': frames_since_update
|
| 689 |
-
}
|
| 690 |
-
effective_threshold = self.compute_adaptive_threshold(track_metadata)
|
| 691 |
|
| 692 |
-
#
|
| 693 |
-
|
|
|
|
| 694 |
|
| 695 |
-
|
| 696 |
-
#
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
dog_id = self.session_dogs[session_temp_id]
|
| 702 |
-
elif db_dog_id:
|
| 703 |
-
dog_id = db_dog_id
|
| 704 |
-
self.session_dogs[session_temp_id] = dog_id
|
| 705 |
-
else:
|
| 706 |
-
dog_id = 0
|
| 707 |
-
|
| 708 |
-
self._update_active_dog(session_temp_id, dog_id, features_obj, position)
|
| 709 |
|
| 710 |
-
if
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
else:
|
| 716 |
-
#
|
| 717 |
new_temp_id = self.next_temp_id
|
| 718 |
self.next_temp_id += 1
|
| 719 |
-
self.temp_id_features[new_temp_id] = [
|
| 720 |
|
| 721 |
-
|
| 722 |
-
self.session_dogs[new_temp_id] = db_dog_id
|
| 723 |
-
self._update_active_dog(new_temp_id, db_dog_id, features_obj, position)
|
| 724 |
-
self._save_to_database(db_dog_id, features_obj, detection)
|
| 725 |
-
print(f" 📂 Known dog (ID {db_dog_id}) → New Temp ID {new_temp_id}")
|
| 726 |
-
return self._create_result(new_temp_id, db_dog_id, 1.0, True, "database_new")
|
| 727 |
-
else:
|
| 728 |
-
self._update_active_dog(new_temp_id, 0, features_obj, position)
|
| 729 |
-
print(f" 🆕 New dog: Temp ID {new_temp_id}")
|
| 730 |
-
return self._create_result(new_temp_id, 0, 1.0, False, "completely_new")
|
| 731 |
-
|
| 732 |
-
def _create_result(self, temp_id: int, dog_id: int, confidence: float,
|
| 733 |
-
is_known: bool, match_type: str) -> Dict:
|
| 734 |
-
"""Create result dictionary with debug info"""
|
| 735 |
-
result = {
|
| 736 |
-
'MegaDescriptor': {
|
| 737 |
-
'dog_id': temp_id,
|
| 738 |
-
'permanent_id': dog_id,
|
| 739 |
-
'confidence': confidence,
|
| 740 |
-
'is_known': is_known,
|
| 741 |
-
'permanent_name': self.db_embeddings_cache.get(dog_id, {}).get('name') if dog_id > 0 else None,
|
| 742 |
-
'match_type': match_type
|
| 743 |
-
}
|
| 744 |
-
}
|
| 745 |
-
|
| 746 |
-
# Add debug info
|
| 747 |
-
if DEBUG_CONFIG['VERBOSE']:
|
| 748 |
-
result['debug'] = {
|
| 749 |
-
'frame': self.current_frame,
|
| 750 |
-
'match_type': match_type,
|
| 751 |
-
'active_dogs': len(self.active_dogs),
|
| 752 |
-
'sleeping_tracks': len(self.sleeping_tracks),
|
| 753 |
-
'temp_ids': len(self.temp_id_features)
|
| 754 |
-
}
|
| 755 |
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
return {
|
| 761 |
-
'MegaDescriptor': {
|
| 762 |
-
'dog_id': 0,
|
| 763 |
-
'permanent_id': 0,
|
| 764 |
-
'confidence': 0.0,
|
| 765 |
-
'is_known': False,
|
| 766 |
-
'permanent_name': None,
|
| 767 |
-
'match_type': 'no_detection'
|
| 768 |
}
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
def _update_active_dog(self, temp_id: int, dog_id: int, features: DogFeatures,
|
| 772 |
-
position: Tuple[float, float]):
|
| 773 |
-
"""Update active dog with match history"""
|
| 774 |
-
if temp_id in self.active_dogs:
|
| 775 |
-
active = self.active_dogs[temp_id]
|
| 776 |
-
active.last_frame_seen = self.current_frame
|
| 777 |
-
active.last_position = position
|
| 778 |
-
active.features_list.append(features)
|
| 779 |
-
|
| 780 |
-
# Keep last 30 features
|
| 781 |
-
if len(active.features_list) > 30:
|
| 782 |
-
active.features_list = active.features_list[-30:]
|
| 783 |
-
else:
|
| 784 |
-
self.active_dogs[temp_id] = ActiveDog(
|
| 785 |
-
temp_id=temp_id,
|
| 786 |
-
dog_id=dog_id,
|
| 787 |
-
features_list=[features],
|
| 788 |
-
last_frame_seen=self.current_frame,
|
| 789 |
-
last_position=position
|
| 790 |
-
)
|
| 791 |
-
|
| 792 |
-
def _auto_move_inactive_to_sleeping(self):
|
| 793 |
-
"""Automatically move inactive dogs to sleeping"""
|
| 794 |
-
inactive_temp_ids = []
|
| 795 |
-
|
| 796 |
-
for temp_id, active_dog in self.active_dogs.items():
|
| 797 |
-
frames_since_seen = self.current_frame - active_dog.last_frame_seen
|
| 798 |
-
if frames_since_seen > 30 and active_dog.dog_id > 0:
|
| 799 |
-
inactive_temp_ids.append(temp_id)
|
| 800 |
-
|
| 801 |
-
for temp_id in inactive_temp_ids:
|
| 802 |
-
active_dog = self.active_dogs[temp_id]
|
| 803 |
-
if active_dog.features_list:
|
| 804 |
-
# Use mean embedding for sleeping track
|
| 805 |
-
mean_emb = self.compute_mean_embedding(active_dog.features_list)
|
| 806 |
-
|
| 807 |
-
sleeping_track = SleepingTrack(
|
| 808 |
-
dog_id=active_dog.dog_id,
|
| 809 |
-
last_position=active_dog.last_position,
|
| 810 |
-
last_seen=datetime.now(),
|
| 811 |
-
last_frame=active_dog.last_frame_seen,
|
| 812 |
-
features_list=active_dog.features_list[-10:],
|
| 813 |
-
avg_embedding=mean_emb
|
| 814 |
-
)
|
| 815 |
-
|
| 816 |
-
self.sleeping_tracks.append(sleeping_track)
|
| 817 |
-
|
| 818 |
-
# Limit sleeping tracks
|
| 819 |
-
if len(self.sleeping_tracks) > self.max_sleeping_tracks:
|
| 820 |
-
self.sleeping_tracks = sorted(
|
| 821 |
-
self.sleeping_tracks,
|
| 822 |
-
key=lambda x: x.last_frame,
|
| 823 |
-
reverse=True
|
| 824 |
-
)[:self.max_sleeping_tracks]
|
| 825 |
-
|
| 826 |
-
print(f" 💤 Moved Dog ID {active_dog.dog_id} to sleeping "
|
| 827 |
-
f"(inactive for {frames_since_seen} frames)")
|
| 828 |
-
|
| 829 |
-
del self.active_dogs[temp_id]
|
| 830 |
-
|
| 831 |
-
def _get_temp_id_for_dog(self, dog_id: int) -> int:
|
| 832 |
-
"""Get or create temp ID for a permanent dog ID"""
|
| 833 |
-
for temp_id, stored_dog_id in self.session_dogs.items():
|
| 834 |
-
if stored_dog_id == dog_id:
|
| 835 |
-
return temp_id
|
| 836 |
-
|
| 837 |
-
new_temp_id = self.next_temp_id
|
| 838 |
-
self.next_temp_id += 1
|
| 839 |
-
self.session_dogs[new_temp_id] = dog_id
|
| 840 |
-
return new_temp_id
|
| 841 |
-
|
| 842 |
-
def _save_to_database(self, dog_id: int, features: DogFeatures, detection):
|
| 843 |
-
"""Save to database with error handling"""
|
| 844 |
-
try:
|
| 845 |
-
self.db.update_dog_sighting(dog_id)
|
| 846 |
-
|
| 847 |
-
color_histogram = np.zeros(256)
|
| 848 |
-
self.db.save_features(
|
| 849 |
-
dog_id=dog_id,
|
| 850 |
-
resnet_features=features.features,
|
| 851 |
-
color_histogram=color_histogram,
|
| 852 |
-
confidence=features.confidence
|
| 853 |
-
)
|
| 854 |
-
|
| 855 |
-
self.db.save_image(
|
| 856 |
-
dog_id=dog_id,
|
| 857 |
-
image=features.image,
|
| 858 |
-
frame_number=features.frame_num,
|
| 859 |
-
video_source=self.current_video_source,
|
| 860 |
-
bbox=features.bbox,
|
| 861 |
-
confidence=features.confidence
|
| 862 |
-
)
|
| 863 |
-
|
| 864 |
-
position = ((features.bbox[0] + features.bbox[2]) / 2,
|
| 865 |
-
(features.bbox[1] + features.bbox[3]) / 2)
|
| 866 |
-
|
| 867 |
-
self.db.add_sighting(
|
| 868 |
-
dog_id=dog_id,
|
| 869 |
-
position=position,
|
| 870 |
-
video_source=self.current_video_source,
|
| 871 |
-
frame_number=features.frame_num,
|
| 872 |
-
confidence=features.confidence
|
| 873 |
-
)
|
| 874 |
-
except Exception as e:
|
| 875 |
-
print(f"❌ Database save error: {e}")
|
| 876 |
-
|
| 877 |
-
def set_all_thresholds(self, threshold: float):
|
| 878 |
-
"""
|
| 879 |
-
RECOMMENDATION #1: Fixed threshold hierarchy
|
| 880 |
-
Database MUST be stricter than session
|
| 881 |
-
"""
|
| 882 |
-
self.session_threshold = max(0.15, min(0.95, threshold))
|
| 883 |
-
self.database_threshold = self.session_threshold + 0.20 # STRICTER
|
| 884 |
-
self.sleeping_threshold = self.session_threshold - 0.05 # More lenient
|
| 885 |
-
|
| 886 |
-
print(f"\n📊 Threshold Update:")
|
| 887 |
-
print(f" Session: {self.session_threshold:.2f}")
|
| 888 |
-
print(f" Database: {self.database_threshold:.2f} (stricter)")
|
| 889 |
-
print(f" Sleeping: {self.sleeping_threshold:.2f} (lenient)")
|
| 890 |
-
print(f" ✅ Correct hierarchy: DB > Session > Sleeping")
|
| 891 |
-
|
| 892 |
-
def print_debug_summary(self):
|
| 893 |
-
"""Print comprehensive debug summary"""
|
| 894 |
-
print("\n" + "="*80)
|
| 895 |
-
print("DEBUG SUMMARY")
|
| 896 |
-
print("="*80)
|
| 897 |
-
all_qualities = []
|
| 898 |
-
# Feature quality stats
|
| 899 |
-
if self.quality_history:
|
| 900 |
-
|
| 901 |
-
for qualities in self.quality_history.values():
|
| 902 |
-
all_qualities.extend(qualities)
|
| 903 |
-
print(f"\n📊 Feature Quality Stats:")
|
| 904 |
-
print(f" Average: {np.mean(all_qualities):.3f}")
|
| 905 |
-
print(f" Range: [{min(all_qualities):.3f} - {max(all_qualities):.3f}]")
|
| 906 |
-
|
| 907 |
-
# Storage reduction stats
|
| 908 |
-
print(f"\n💾 Storage Reduction Stats:")
|
| 909 |
-
for key, value in self.feature_reduction_stats.items():
|
| 910 |
-
print(f" {key}: {value}")
|
| 911 |
-
|
| 912 |
-
# Aggregation stats
|
| 913 |
-
print(f"\n🔄 Aggregation Stats:")
|
| 914 |
-
print(f" Mean computations: {self.aggregation_stats['mean_computations']}")
|
| 915 |
-
print(f" Individual comparisons: {self.aggregation_stats['individual_comparisons']}")
|
| 916 |
-
|
| 917 |
-
# Save debug file if enabled
|
| 918 |
-
if DEBUG_CONFIG['SAVE_DEBUG_FILE'] and self.debug_log:
|
| 919 |
-
debug_data = {
|
| 920 |
-
'summary': {
|
| 921 |
-
'total_frames': self.current_frame,
|
| 922 |
-
'temp_ids_created': self.next_temp_id - 1,
|
| 923 |
-
'active_dogs': len(self.active_dogs),
|
| 924 |
-
'sleeping_tracks': len(self.sleeping_tracks),
|
| 925 |
-
'quality_stats': {
|
| 926 |
-
'avg': float(np.mean(all_qualities)) if all_qualities else 0,
|
| 927 |
-
'min': float(min(all_qualities)) if all_qualities else 0,
|
| 928 |
-
'max': float(max(all_qualities)) if all_qualities else 0
|
| 929 |
-
},
|
| 930 |
-
'storage_stats': dict(self.feature_reduction_stats),
|
| 931 |
-
'aggregation_stats': dict(self.aggregation_stats)
|
| 932 |
-
},
|
| 933 |
-
'log': [log.to_dict() for log in self.debug_log[-1000:]] # Last 1000 entries
|
| 934 |
-
}
|
| 935 |
-
|
| 936 |
-
with open(DEBUG_CONFIG['DEBUG_FILE_PATH'], 'w') as f:
|
| 937 |
-
json.dump(debug_data, f, indent=2, default=str)
|
| 938 |
-
|
| 939 |
-
print(f"\n💾 Debug log saved to {DEBUG_CONFIG['DEBUG_FILE_PATH']}")
|
| 940 |
-
|
| 941 |
-
def reset_all(self):
|
| 942 |
-
"""Reset with summary"""
|
| 943 |
-
self.print_debug_summary()
|
| 944 |
-
|
| 945 |
-
self.temp_id_features.clear()
|
| 946 |
-
self.session_dogs.clear()
|
| 947 |
-
self.sleeping_tracks.clear()
|
| 948 |
-
self.active_dogs.clear()
|
| 949 |
-
self.next_temp_id = 1
|
| 950 |
-
self.current_frame = 0
|
| 951 |
-
self.debug_log.clear()
|
| 952 |
-
self.debug_stats.clear()
|
| 953 |
-
self.quality_history.clear()
|
| 954 |
-
self.feature_reduction_stats.clear()
|
| 955 |
-
|
| 956 |
-
print("\n🔄 Session reset complete\n")
|
| 957 |
-
|
| 958 |
def get_statistics(self) -> Dict:
|
| 959 |
-
"""Get statistics
|
| 960 |
-
dogs_df = self.db.get_all_dogs()
|
| 961 |
-
db_stats = self.db.get_dog_statistics()
|
| 962 |
-
|
| 963 |
return {
|
| 964 |
-
'
|
| 965 |
-
'
|
| 966 |
-
'
|
| 967 |
-
|
| 968 |
-
'total_images': db_stats.get('total_images', 0),
|
| 969 |
-
'total_sightings': db_stats.get('total_sightings', 0),
|
| 970 |
-
'debug': {
|
| 971 |
-
'feature_reduction': dict(self.feature_reduction_stats),
|
| 972 |
-
'aggregation_count': self.aggregation_stats['mean_computations']
|
| 973 |
-
}
|
| 974 |
-
}
|
| 975 |
-
|
| 976 |
-
# Compatibility aliases
|
| 977 |
-
MegaDescriptorReID = SQLiteEnhancedReID
|
| 978 |
-
EnhancedMegaDescriptorReID = SQLiteEnhancedReID
|
|
|
|
| 1 |
"""
|
| 2 |
+
Simplified ReID - Basic threshold matching only
|
| 3 |
+
No adaptive thresholds, no quality scoring, no smart storage
|
| 4 |
"""
|
| 5 |
import numpy as np
|
| 6 |
import cv2
|
| 7 |
import torch
|
| 8 |
import timm
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
+
from typing import Dict, Optional
|
| 11 |
+
from collections import defaultdict
|
| 12 |
+
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
+
class SimplifiedReID:
|
| 16 |
+
"""Simplified ReID with basic threshold matching"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def __init__(self, device: str = 'cuda'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
self.device = device if torch.cuda.is_available() else 'cpu'
|
|
|
|
| 20 |
|
| 21 |
+
# Single threshold for all matching
|
| 22 |
+
self.threshold = 0.40
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# Session tracking (temp IDs)
|
| 25 |
+
self.temp_id_features = {} # temp_id -> list of feature vectors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
self.next_temp_id = 1
|
| 27 |
self.current_frame = 0
|
| 28 |
self.current_video_source = "unknown"
|
| 29 |
|
| 30 |
+
# Initialize model
|
| 31 |
+
self._initialize_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
print(f"Simplified ReID initialized on {self.device}")
|
| 34 |
+
|
| 35 |
+
def _initialize_model(self):
|
| 36 |
+
"""Load MegaDescriptor model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
self.model = timm.create_model(
|
| 39 |
'hf-hub:BVRA/MegaDescriptor-L-384',
|
|
|
|
| 47 |
mean=[0.5, 0.5, 0.5],
|
| 48 |
std=[0.5, 0.5, 0.5]
|
| 49 |
)
|
| 50 |
+
print("MegaDescriptor-L-384 loaded")
|
| 51 |
except Exception as e:
|
| 52 |
+
print(f"Error loading model: {e}")
|
| 53 |
self.model = None
|
| 54 |
+
|
| 55 |
+
def set_threshold(self, threshold: float):
|
| 56 |
+
"""Set matching threshold"""
|
| 57 |
+
self.threshold = max(0.10, min(0.95, threshold))
|
| 58 |
+
print(f"Threshold set to: {self.threshold:.2f}")
|
| 59 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
def set_video_source(self, video_path: str):
|
| 61 |
+
"""Set current video source"""
|
| 62 |
self.current_video_source = video_path
|
| 63 |
+
|
| 64 |
+
def reset_session(self):
|
| 65 |
+
"""Clear session data"""
|
| 66 |
+
self.temp_id_features.clear()
|
| 67 |
+
self.next_temp_id = 1
|
| 68 |
+
self.current_frame = 0
|
| 69 |
+
print("Session reset")
|
| 70 |
+
|
| 71 |
+
def extract_features(self, image: np.ndarray) -> Optional[np.ndarray]:
|
| 72 |
+
"""Extract feature vector from image"""
|
| 73 |
if image is None or image.size == 0 or self.model is None:
|
| 74 |
return None
|
| 75 |
+
|
| 76 |
try:
|
| 77 |
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 78 |
from PIL import Image
|
|
|
|
| 81 |
|
| 82 |
with torch.no_grad():
|
| 83 |
features = self.model(img_tensor)
|
| 84 |
+
|
| 85 |
features = features.squeeze().cpu().numpy()
|
| 86 |
features = features / (np.linalg.norm(features) + 1e-7)
|
| 87 |
|
| 88 |
+
return features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
except Exception as e:
|
| 90 |
+
print(f"Feature extraction error: {e}")
|
| 91 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
def match_or_register(self, track) -> Dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
"""
|
| 95 |
+
Simple matching: compare features against existing temp_ids
|
| 96 |
+
If match found -> return temp_id
|
| 97 |
+
If no match -> create new temp_id
|
| 98 |
"""
|
| 99 |
self.current_frame += 1
|
|
|
|
| 100 |
|
| 101 |
+
# Get image crop from track
|
| 102 |
detection = None
|
| 103 |
for det in reversed(track.detections[-3:]):
|
| 104 |
if det.image_crop is not None:
|
| 105 |
detection = det
|
| 106 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
if detection is None or detection.image_crop is None:
|
| 109 |
+
return {'temp_id': 0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
# Extract features
|
| 112 |
+
features = self.extract_features(detection.image_crop)
|
| 113 |
+
if features is None:
|
| 114 |
+
return {'temp_id': 0}
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# Search for match in existing temp_ids
|
| 117 |
+
best_temp_id = None
|
| 118 |
+
best_score = -1.0
|
| 119 |
|
| 120 |
+
for temp_id, features_list in self.temp_id_features.items():
|
| 121 |
+
# Compare against all stored features for this temp_id
|
| 122 |
+
similarities = []
|
| 123 |
+
for stored_features in features_list:
|
| 124 |
+
sim = np.dot(features, stored_features)
|
| 125 |
+
similarities.append(sim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
if similarities:
|
| 128 |
+
max_sim = max(similarities)
|
| 129 |
+
if max_sim > best_score:
|
| 130 |
+
best_score = max_sim
|
| 131 |
+
best_temp_id = temp_id
|
| 132 |
+
|
| 133 |
+
# Check if best score passes threshold
|
| 134 |
+
if best_temp_id is not None and best_score >= self.threshold:
|
| 135 |
+
# Match found - add features to existing temp_id
|
| 136 |
+
self.temp_id_features[best_temp_id].append(features)
|
| 137 |
+
|
| 138 |
+
# Limit storage (keep last 30)
|
| 139 |
+
if len(self.temp_id_features[best_temp_id]) > 30:
|
| 140 |
+
self.temp_id_features[best_temp_id] = self.temp_id_features[best_temp_id][-30:]
|
| 141 |
+
|
| 142 |
+
return {
|
| 143 |
+
'temp_id': best_temp_id,
|
| 144 |
+
'confidence': best_score,
|
| 145 |
+
'match_type': 'existing'
|
| 146 |
+
}
|
| 147 |
else:
|
| 148 |
+
# No match - create new temp_id
|
| 149 |
new_temp_id = self.next_temp_id
|
| 150 |
self.next_temp_id += 1
|
| 151 |
+
self.temp_id_features[new_temp_id] = [features]
|
| 152 |
|
| 153 |
+
print(f"New temp_id: {new_temp_id} (threshold: {self.threshold:.2f})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
return {
|
| 156 |
+
'temp_id': new_temp_id,
|
| 157 |
+
'confidence': 1.0,
|
| 158 |
+
'match_type': 'new'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
}
|
| 160 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
def get_statistics(self) -> Dict:
|
| 162 |
+
"""Get simple statistics"""
|
|
|
|
|
|
|
|
|
|
| 163 |
return {
|
| 164 |
+
'temp_ids': len(self.temp_id_features),
|
| 165 |
+
'threshold': self.threshold,
|
| 166 |
+
'current_frame': self.current_frame
|
| 167 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|