Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import base64
|
| 3 |
+
import io
|
| 4 |
+
import requests
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# ------------------------------------------------------------------------------
|
| 9 |
+
# Make sure you export your API token before running this script:
|
| 10 |
+
# export CHUTES_API_TOKEN="your_real_token_here"
|
| 11 |
+
# ------------------------------------------------------------------------------
|
| 12 |
+
|
| 13 |
+
API_TOKEN = os.getenv("CHUTES_API_TOKEN")
|
| 14 |
+
if API_TOKEN is None:
|
| 15 |
+
raise ValueError("Please set the environment variable CHUTES_API_TOKEN before running.")
|
| 16 |
+
|
| 17 |
+
def generate_image(prompt: str,
|
| 18 |
+
resolution: str,
|
| 19 |
+
guidance_scale: float,
|
| 20 |
+
num_inference_steps: int,
|
| 21 |
+
shift: int) -> Image.Image:
|
| 22 |
+
"""
|
| 23 |
+
Calls the HiDream (Chutes) API to generate an image from the given prompt
|
| 24 |
+
and parameters. Returns a PIL.Image.
|
| 25 |
+
"""
|
| 26 |
+
headers = {
|
| 27 |
+
"Authorization": f"Bearer {API_TOKEN}",
|
| 28 |
+
"Content-Type": "application/json"
|
| 29 |
+
}
|
| 30 |
+
payload = {
|
| 31 |
+
"seed": None, # always random
|
| 32 |
+
"shift": shift,
|
| 33 |
+
"prompt": prompt,
|
| 34 |
+
"resolution": resolution,
|
| 35 |
+
"guidance_scale": guidance_scale,
|
| 36 |
+
"num_inference_steps": num_inference_steps
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
response = requests.post(
|
| 40 |
+
"https://chutes-hidream.chutes.ai/generate",
|
| 41 |
+
headers=headers,
|
| 42 |
+
json=payload
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
if response.status_code != 200:
|
| 46 |
+
# you can customize error handling as needed
|
| 47 |
+
raise RuntimeError(f"API returned {response.status_code}: {response.text}")
|
| 48 |
+
|
| 49 |
+
data = response.json()
|
| 50 |
+
# Typically, the API returns a base64‐encoded image under the key "image".
|
| 51 |
+
# If yours returns a URL (e.g. under "url"), you can fetch that instead.
|
| 52 |
+
b64_img = data.get("image")
|
| 53 |
+
if b64_img:
|
| 54 |
+
decoded = base64.b64decode(b64_img)
|
| 55 |
+
img = Image.open(io.BytesIO(decoded)).convert("RGB")
|
| 56 |
+
return img
|
| 57 |
+
|
| 58 |
+
# Fallback: if the API returns a direct URL
|
| 59 |
+
img_url = data.get("url") or data.get("image_url")
|
| 60 |
+
if img_url:
|
| 61 |
+
img_response = requests.get(img_url)
|
| 62 |
+
img = Image.open(io.BytesIO(img_response.content)).convert("RGB")
|
| 63 |
+
return img
|
| 64 |
+
|
| 65 |
+
raise RuntimeError("No image field found in API response.")
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# Build the Gradio interface
|
| 69 |
+
with gr.Blocks(title="HiDream Unlimited") as demo:
|
| 70 |
+
gr.Markdown("## HiDream Unlimited\nGenerate unlimited AI‐driven images powered by HiDream/Chutes.\n\nEnter your prompt and tweak the parameters, then click **Generate**.")
|
| 71 |
+
|
| 72 |
+
with gr.Row():
|
| 73 |
+
with gr.Column(scale=1):
|
| 74 |
+
prompt_in = gr.Textbox(
|
| 75 |
+
label="Prompt",
|
| 76 |
+
placeholder="e.g. a serene sunset over a coral reef, digital painting",
|
| 77 |
+
lines=2
|
| 78 |
+
)
|
| 79 |
+
resolution_in = gr.Dropdown(
|
| 80 |
+
choices=["512x512", "768x768", "1024x1024"],
|
| 81 |
+
value="1024x1024",
|
| 82 |
+
label="Resolution"
|
| 83 |
+
)
|
| 84 |
+
guidance_in = gr.Slider(
|
| 85 |
+
minimum=0.0, maximum=20.0, step=0.5,
|
| 86 |
+
value=5.0, label="Guidance Scale"
|
| 87 |
+
)
|
| 88 |
+
steps_in = gr.Slider(
|
| 89 |
+
minimum=1, maximum=100, step=1,
|
| 90 |
+
value=50, label="Num Inference Steps"
|
| 91 |
+
)
|
| 92 |
+
shift_in = gr.Slider(
|
| 93 |
+
minimum=0, maximum=10, step=1,
|
| 94 |
+
value=3, label="Shift"
|
| 95 |
+
)
|
| 96 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
| 97 |
+
|
| 98 |
+
with gr.Column(scale=1):
|
| 99 |
+
output_img = gr.Image(label="Generated Image", interactive=False)
|
| 100 |
+
|
| 101 |
+
# Wire up the button
|
| 102 |
+
generate_btn.click(
|
| 103 |
+
fn=generate_image,
|
| 104 |
+
inputs=[prompt_in, resolution_in, guidance_in, steps_in, shift_in],
|
| 105 |
+
outputs=output_img
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
demo.launch()
|