- app.py +497 -4
- requirements.txt +5 -0
app.py
CHANGED
|
@@ -1,7 +1,500 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
import gradio as gr
|
| 3 |
+
import polars as pl
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import torch
|
| 6 |
+
import json
|
| 7 |
+
from gradio import ChatMessage
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
+
IN_SPACE = bool(os.environ.get("SPACE_AUTHOR_NAME", False))
|
|
|
|
| 11 |
|
| 12 |
+
files = [
|
| 13 |
+
"./lmsys-ex38-model_oof_df.parquet",
|
| 14 |
+
"./lmsys-ex41-model_oof_df.parquet",
|
| 15 |
+
"./lmsys-ex43-model_oof_df.parquet",
|
| 16 |
+
"./lmsys-exp-llm-049-weight_preds.parquet",
|
| 17 |
+
"./lmsys-exp-llm-053-weight_preds.parquet",
|
| 18 |
+
"./lmsys-exp-llm-063-weight_preds.parquet",
|
| 19 |
+
"./lmsys-exp-llm-065-weight_preds.parquet",
|
| 20 |
+
"./lmsys-exp-llm-073-weight_preds.parquet",
|
| 21 |
+
"./lmsys-exp-llm-078-weight_preds.parquet",
|
| 22 |
+
"./lmsys-exp-llm-081-weight_preds.parquet",
|
| 23 |
+
"./lmsys-exp-llm-085-weight_preds.parquet",
|
| 24 |
+
"./lmsys-oof-exp2_preds.parquet",
|
| 25 |
+
"./lmsys-oof-exp29_preds.parquet",
|
| 26 |
+
]
|
| 27 |
+
train_filepath = "./train.parquet"
|
| 28 |
+
|
| 29 |
+
if not IN_SPACE:
|
| 30 |
+
files = [x.replace("./", "../../data/oofs/") for x in files]
|
| 31 |
+
train_filepath = "../../data/train.parquet"
|
| 32 |
+
from dotenv import load_dotenv
|
| 33 |
+
loaded = load_dotenv("../../.env")
|
| 34 |
+
print("Loaded .env file:", loaded)
|
| 35 |
+
|
| 36 |
+
HF_TOKEN = os.getenv("HF_READ_OOFS_TOKEN")
|
| 37 |
+
|
| 38 |
+
if not HF_TOKEN:
|
| 39 |
+
print("be sure to set HF_READ_OOFS_TOKEN in .env file")
|
| 40 |
+
|
| 41 |
+
if not Path(files[0]).exists():
|
| 42 |
+
from huggingface_hub import snapshot_download, login
|
| 43 |
+
|
| 44 |
+
login(token=HF_TOKEN)
|
| 45 |
+
|
| 46 |
+
snapshot_download("nbroad/lmsys-cahpp-oofs", repo_type="dataset", local_dir="./", local_dir_use_symlinks=False)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
exps = {}
|
| 50 |
+
|
| 51 |
+
for f in files:
|
| 52 |
+
if "lmsys-exp-llm-" in f:
|
| 53 |
+
exp = f.split("lmsys-exp-llm-")[1].split("-")[0]
|
| 54 |
+
elif "lmsys-ex" in f:
|
| 55 |
+
exp = f.split("lmsys-ex")[1].split("-")[0]
|
| 56 |
+
elif "lmsys-oof-exp" in f:
|
| 57 |
+
exp = f.split("lmsys-oof-exp")[1].split("_")[0]
|
| 58 |
+
exps[f] = exp
|
| 59 |
+
exps[f.split("/")[-1]] = exp
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def make_df():
|
| 63 |
+
data = {f: pd.read_parquet(f) for f in files}
|
| 64 |
+
|
| 65 |
+
for k in data.keys():
|
| 66 |
+
exp = exps[k]
|
| 67 |
+
|
| 68 |
+
if "0" in data[k].columns:
|
| 69 |
+
data[k] = data[k].rename(
|
| 70 |
+
columns={
|
| 71 |
+
"0": f"winner_model_a_prob_{exp}",
|
| 72 |
+
"1": f"winner_model_b_prob_{exp}",
|
| 73 |
+
"2": f"winner_tie_prob_{exp}",
|
| 74 |
+
},
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
elif "winner_tie_prob" not in data[k].columns:
|
| 78 |
+
|
| 79 |
+
data[k] = data[k].rename(
|
| 80 |
+
columns={
|
| 81 |
+
"winner_model_a": f"winner_model_a_prob_{exp}",
|
| 82 |
+
"winner_model_b": f"winner_model_b_prob_{exp}",
|
| 83 |
+
"winner_tie": f"winner_tie_prob_{exp}",
|
| 84 |
+
}
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
data[k] = data[k].rename(
|
| 88 |
+
columns={
|
| 89 |
+
"winner_model_a_prob": f"winner_model_a_prob_{exp}",
|
| 90 |
+
"winner_model_b_prob": f"winner_model_b_prob_{exp}",
|
| 91 |
+
"winner_tie_prob": f"winner_tie_prob_{exp}",
|
| 92 |
+
}
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
pred_cols = [
|
| 96 |
+
f"winner_model_a_prob_{exp}",
|
| 97 |
+
f"winner_model_b_prob_{exp}",
|
| 98 |
+
f"winner_tie_prob_{exp}",
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
data[k] = data[k].sort_values("id")
|
| 102 |
+
|
| 103 |
+
final_columns = ["id"] + pred_cols
|
| 104 |
+
|
| 105 |
+
data[k] = data[k][final_columns]
|
| 106 |
+
|
| 107 |
+
id_col = data[files[0]].iloc[:, 0]
|
| 108 |
+
|
| 109 |
+
joined = pd.concat([x.drop("id", axis=1) for x in data.values()], axis=1)
|
| 110 |
+
|
| 111 |
+
# joined = pl.concat([x.drop("id") for x in data.values()], how="horizontal")
|
| 112 |
+
# id_col = joined.iloc[:, 0]
|
| 113 |
+
# joined = joined.drop("id")
|
| 114 |
+
# joined = joined.insert_column(0, id_col)
|
| 115 |
+
|
| 116 |
+
joined["id"] = id_col
|
| 117 |
+
|
| 118 |
+
tdf = pd.read_parquet(train_filepath)
|
| 119 |
+
|
| 120 |
+
joined = joined.merge(tdf, on="id", how="left")
|
| 121 |
+
|
| 122 |
+
joined["winner"] = ""
|
| 123 |
+
joined.loc[joined["winner_model_a"] == 1, "winner"] = "A"
|
| 124 |
+
joined.loc[joined["winner_model_b"] == 1, "winner"] = "B"
|
| 125 |
+
joined.loc[joined["winner_tie"] == 1, "winner"] = "Tie"
|
| 126 |
+
|
| 127 |
+
for exp in exps.values():
|
| 128 |
+
pred_cols = [
|
| 129 |
+
f"winner_model_a_prob_{exp}",
|
| 130 |
+
f"winner_model_b_prob_{exp}",
|
| 131 |
+
f"winner_tie_prob_{exp}",
|
| 132 |
+
]
|
| 133 |
+
|
| 134 |
+
temp_scores = joined[pred_cols].values
|
| 135 |
+
|
| 136 |
+
if temp_scores.sum(axis=-1).max() > 1.1:
|
| 137 |
+
temp_scores = torch.tensor(temp_scores).softmax(-1)
|
| 138 |
+
else:
|
| 139 |
+
temp_scores = torch.tensor(temp_scores)
|
| 140 |
+
|
| 141 |
+
joined[pred_cols] = temp_scores.numpy()
|
| 142 |
+
|
| 143 |
+
gt_idxs = joined[
|
| 144 |
+
["winner_model_a", "winner_model_b", "winner_tie"]
|
| 145 |
+
].values.argsort()[:, -1]
|
| 146 |
+
temp = temp_scores[torch.arange(temp_scores.shape[0]), gt_idxs]
|
| 147 |
+
|
| 148 |
+
joined[f"loss_{exp}"] = torch.nn.functional.binary_cross_entropy(
|
| 149 |
+
temp, torch.ones(len(temp), dtype=torch.float64), reduction="none"
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
joined["prompt_length"] = [len(x) for x in joined["prompt"]]
|
| 153 |
+
joined["response_a_length"] = [len(x) for x in joined["response_a"]]
|
| 154 |
+
joined["response_b_length"] = [len(x) for x in joined["response_b"]]
|
| 155 |
+
joined["total_length"] = (
|
| 156 |
+
joined["prompt_length"]
|
| 157 |
+
+ joined["response_a_length"]
|
| 158 |
+
+ joined["response_b_length"]
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
loss_cols = [x for x in joined.columns if "loss" in x]
|
| 162 |
+
joined["avg_loss"] = joined[loss_cols].mean(axis=1)
|
| 163 |
+
joined["avg_winner_model_a"] = joined[
|
| 164 |
+
[x for x in joined.columns if "winner_model_a_prob" in x]
|
| 165 |
+
].mean(axis=1)
|
| 166 |
+
joined["avg_winner_model_b"] = joined[
|
| 167 |
+
[x for x in joined.columns if "winner_model_b_prob" in x]
|
| 168 |
+
].mean(axis=1)
|
| 169 |
+
joined["avg_winner_tie"] = joined[
|
| 170 |
+
[x for x in joined.columns if "winner_tie_prob" in x]
|
| 171 |
+
].mean(axis=1)
|
| 172 |
+
|
| 173 |
+
prob_cols = [x for x in joined.columns if "prob" in x]
|
| 174 |
+
loss_cols = [x for x in joined.columns if "loss" in x]
|
| 175 |
+
|
| 176 |
+
joined[prob_cols + loss_cols] = joined[prob_cols + loss_cols].astype("float16")
|
| 177 |
+
|
| 178 |
+
id2texts = {i: (p, a, b) for i, p, a, b in joined[["id", "prompt", "response_a", "response_b"]].values}
|
| 179 |
+
|
| 180 |
+
joined = joined.drop(columns=["prompt", "response_a", "response_b"])
|
| 181 |
+
|
| 182 |
+
return joined, id2texts
|
| 183 |
+
|
| 184 |
+
# def make_df():
|
| 185 |
+
# data = {f: pl.read_csv(f) for f in files}
|
| 186 |
+
|
| 187 |
+
# for k in data.keys():
|
| 188 |
+
# exp = exps[k]
|
| 189 |
+
|
| 190 |
+
# if "0" in data[k].columns:
|
| 191 |
+
# data[k] = data[k].rename({
|
| 192 |
+
# "0": f"winner_model_a_prob_{exp}",
|
| 193 |
+
# "1": f"winner_model_b_prob_{exp}",
|
| 194 |
+
# "2": f"winner_tie_prob_{exp}",
|
| 195 |
+
# })
|
| 196 |
+
# elif "winner_tie_prob" not in data[k].columns:
|
| 197 |
+
# data[k] = data[k].rename({
|
| 198 |
+
# "winner_model_a": f"winner_model_a_prob_{exp}",
|
| 199 |
+
# "winner_model_b": f"winner_model_b_prob_{exp}",
|
| 200 |
+
# "winner_tie": f"winner_tie_prob_{exp}",
|
| 201 |
+
# })
|
| 202 |
+
# else:
|
| 203 |
+
# data[k] = data[k].rename({
|
| 204 |
+
# "winner_model_a_prob": f"winner_model_a_prob_{exp}",
|
| 205 |
+
# "winner_model_b_prob": f"winner_model_b_prob_{exp}",
|
| 206 |
+
# "winner_tie_prob": f"winner_tie_prob_{exp}",
|
| 207 |
+
# })
|
| 208 |
+
|
| 209 |
+
# pred_cols = [
|
| 210 |
+
# f"winner_model_a_prob_{exp}",
|
| 211 |
+
# f"winner_model_b_prob_{exp}",
|
| 212 |
+
# f"winner_tie_prob_{exp}",
|
| 213 |
+
# ]
|
| 214 |
+
|
| 215 |
+
# data[k] = data[k].sort("id")
|
| 216 |
+
|
| 217 |
+
# final_columns = ["id"] + pred_cols
|
| 218 |
+
# data[k] = data[k].select(final_columns)
|
| 219 |
+
|
| 220 |
+
# id_col = data[files[0]].select("id")
|
| 221 |
+
|
| 222 |
+
# joined = pl.concat([x.drop("id") for x in data.values()], how="horizontal")
|
| 223 |
+
# joined = pl.concat([id_col, joined], how="horizontal")
|
| 224 |
+
|
| 225 |
+
# tdf = pl.read_csv(train_csv_path)
|
| 226 |
+
|
| 227 |
+
# joined = joined.join(tdf, on="id", how="left")
|
| 228 |
+
|
| 229 |
+
# joined = joined.with_columns([
|
| 230 |
+
# pl.when(pl.col("winner_model_a") == 1).then(0).otherwise(
|
| 231 |
+
# pl.when(pl.col("winner_model_b") == 1).then(1).otherwise(
|
| 232 |
+
# pl.when(pl.col("winner_tie") == 1).then(2).otherwise(3)
|
| 233 |
+
# )).alias("winner")
|
| 234 |
+
# ])
|
| 235 |
+
|
| 236 |
+
# for exp in exps.values():
|
| 237 |
+
# pred_cols = [
|
| 238 |
+
# f"winner_model_a_prob_{exp}",
|
| 239 |
+
# f"winner_model_b_prob_{exp}",
|
| 240 |
+
# f"winner_tie_prob_{exp}",
|
| 241 |
+
# ]
|
| 242 |
+
|
| 243 |
+
# temp_scores = joined.select(pred_cols).to_numpy()
|
| 244 |
+
|
| 245 |
+
# if temp_scores.sum(axis=-1).max() > 1.1:
|
| 246 |
+
# temp_scores = torch.tensor(temp_scores).softmax(-1)
|
| 247 |
+
# else:
|
| 248 |
+
# temp_scores = torch.tensor(temp_scores)
|
| 249 |
+
|
| 250 |
+
# joined = joined.with_columns([
|
| 251 |
+
# pl.Series(name=col, values=temp_scores[:, i].numpy())
|
| 252 |
+
# for i, col in enumerate(pred_cols)
|
| 253 |
+
# ])
|
| 254 |
+
|
| 255 |
+
# gt_idxs = joined.select(["winner_model_a", "winner_model_b", "winner_tie"]).to_numpy().argsort()[:, -1]
|
| 256 |
+
# temp = temp_scores[torch.arange(temp_scores.shape[0]), gt_idxs]
|
| 257 |
+
|
| 258 |
+
# loss = torch.nn.functional.binary_cross_entropy(
|
| 259 |
+
# temp, torch.ones(len(temp), dtype=torch.float64), reduction="none"
|
| 260 |
+
# )
|
| 261 |
+
|
| 262 |
+
# joined = joined.with_columns([
|
| 263 |
+
# pl.Series(name=f"loss_{exp}", values=loss.numpy())
|
| 264 |
+
# ])
|
| 265 |
+
|
| 266 |
+
# joined = joined.with_columns([
|
| 267 |
+
# pl.col("prompt").str.len_chars().alias("prompt_length"),
|
| 268 |
+
# pl.col("response_a").str.len_chars().alias("response_a_length"),
|
| 269 |
+
# pl.col("response_b").str.len_chars().alias("response_b_length"),
|
| 270 |
+
# ])
|
| 271 |
+
|
| 272 |
+
# joined = joined.with_columns([
|
| 273 |
+
# (pl.col("prompt_length") + pl.col("response_a_length") + pl.col("response_b_length")).alias("total_length")
|
| 274 |
+
# ])
|
| 275 |
+
|
| 276 |
+
# loss_cols = [x for x in joined.columns if "loss" in x]
|
| 277 |
+
|
| 278 |
+
# joined = joined.with_columns([
|
| 279 |
+
# pl.mean_horizontal(loss_cols).alias("avg_loss"),
|
| 280 |
+
# pl.mean_horizontal([x for x in joined.columns if "winner_model_a_prob" in x]).alias("avg_winner_model_a"),
|
| 281 |
+
# pl.mean_horizontal([x for x in joined.columns if "winner_model_b_prob" in x]).alias("avg_winner_model_b"),
|
| 282 |
+
# pl.mean_horizontal([x for x in joined.columns if "winner_tie_prob" in x]).alias("avg_winner_tie"),
|
| 283 |
+
# ])
|
| 284 |
+
|
| 285 |
+
# prob_cols = [x for x in joined.columns if "prob" in x]
|
| 286 |
+
# loss_cols = [x for x in joined.columns if "loss" in x]
|
| 287 |
+
|
| 288 |
+
# joined = joined.with_columns([
|
| 289 |
+
# pl.col(prob_cols + loss_cols).cast(pl.Float32)
|
| 290 |
+
# ])
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
# return joined
|
| 295 |
+
|
| 296 |
+
MAIN_DF, id2texts = make_df()
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def filter_df(lower_limit, upper_limit, file, all_check):
|
| 300 |
+
if all_check or file is None or file == "":
|
| 301 |
+
loss_col = "avg_loss"
|
| 302 |
+
else:
|
| 303 |
+
loss_col = f"loss_{exps[file]}"
|
| 304 |
+
|
| 305 |
+
temp = MAIN_DF[
|
| 306 |
+
(MAIN_DF[loss_col] > lower_limit) & (MAIN_DF[loss_col] < upper_limit)
|
| 307 |
+
]
|
| 308 |
+
temp = temp.sort_values(loss_col, ascending=False).reset_index(drop=True)
|
| 309 |
+
|
| 310 |
+
return 0, temp
|
| 311 |
+
|
| 312 |
+
# def filter_df(lower_limit, upper_limit, file, all_check):
|
| 313 |
+
# if all_check or file is None or file == "":
|
| 314 |
+
# loss_col = "avg_loss"
|
| 315 |
+
# else:
|
| 316 |
+
# loss_col = f"loss_{exps[file]}"
|
| 317 |
+
|
| 318 |
+
# temp = MAIN_DF.filter(
|
| 319 |
+
# (pl.col(loss_col) > lower_limit) & (pl.col(loss_col) < upper_limit)
|
| 320 |
+
# ).sort(loss_col, descending=True)
|
| 321 |
+
|
| 322 |
+
# return 0, temp
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def make_chat(prompt, response, side, label):
|
| 326 |
+
prompts = json.loads(prompt)
|
| 327 |
+
responses = json.loads(response)
|
| 328 |
+
|
| 329 |
+
header = None
|
| 330 |
+
if side == label:
|
| 331 |
+
header = "β
Winner β
"
|
| 332 |
+
elif label == 2 or label == "Tie":
|
| 333 |
+
header = "π¨ Tie π¨"
|
| 334 |
+
else:
|
| 335 |
+
header = "β Loser β"
|
| 336 |
+
|
| 337 |
+
chat = []
|
| 338 |
+
for p, r in zip(prompts, responses):
|
| 339 |
+
chat.append(
|
| 340 |
+
ChatMessage(
|
| 341 |
+
role="user",
|
| 342 |
+
content=header + "\n" + p,
|
| 343 |
+
)
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
if r is None:
|
| 347 |
+
r = ""
|
| 348 |
+
|
| 349 |
+
chat.append(ChatMessage(role="assistant", content=header + "\n" + r))
|
| 350 |
+
|
| 351 |
+
return chat
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
# def show_chats(idx, df, file, all_check):
|
| 355 |
+
|
| 356 |
+
# if idx is None:
|
| 357 |
+
# return None, None
|
| 358 |
+
|
| 359 |
+
# if idx > len(df):
|
| 360 |
+
# idx = len(df) - 1
|
| 361 |
+
# if idx < 0:
|
| 362 |
+
# idx = 0
|
| 363 |
+
|
| 364 |
+
# label = df["winner"].iloc[idx]
|
| 365 |
+
|
| 366 |
+
# chat_a = make_chat(df["prompt"].iloc[idx], df["response_a"].iloc[idx], "A", label)
|
| 367 |
+
# chat_b = make_chat(df["prompt"].iloc[idx], df["response_b"].iloc[idx], "B", label)
|
| 368 |
+
|
| 369 |
+
# if all_check or file is None or file == "":
|
| 370 |
+
# score_cols = ["avg_winner_model_a", "avg_winner_model_b", "avg_winner_tie"]
|
| 371 |
+
# else:
|
| 372 |
+
# score_cols = [
|
| 373 |
+
# f"winner_model_a_prob_{exps[file]}",
|
| 374 |
+
# f"winner_model_b_prob_{exps[file]}",
|
| 375 |
+
# f"winner_tie_prob_{exps[file]}",
|
| 376 |
+
# ]
|
| 377 |
+
|
| 378 |
+
# scores = df[score_cols].iloc[idx].tolist()
|
| 379 |
+
|
| 380 |
+
# if all_check or file is None or file == "":
|
| 381 |
+
# loss_col = "avg_loss"
|
| 382 |
+
# else:
|
| 383 |
+
# loss_col = f"loss_{exps[file]}"
|
| 384 |
+
|
| 385 |
+
# loss = df[loss_col].iloc[idx]
|
| 386 |
+
|
| 387 |
+
# return chat_a, chat_b, label, *scores, loss
|
| 388 |
+
|
| 389 |
+
def show_chats(idx, df, file, all_check):
|
| 390 |
+
if idx is None:
|
| 391 |
+
return None, None
|
| 392 |
+
|
| 393 |
+
if idx >= df.shape[0]:
|
| 394 |
+
idx = df.shape[0] - 1
|
| 395 |
+
if idx < 0:
|
| 396 |
+
idx = 0
|
| 397 |
+
|
| 398 |
+
row = df.iloc[idx]
|
| 399 |
+
label = row["winner"]
|
| 400 |
+
|
| 401 |
+
id_ = row["id"]
|
| 402 |
+
|
| 403 |
+
p, a, b = id2texts[id_]
|
| 404 |
+
|
| 405 |
+
chat_a = make_chat(p, a, "A", label)
|
| 406 |
+
chat_b = make_chat(p, b, "B", label)
|
| 407 |
+
|
| 408 |
+
# chat_a = make_chat(row["prompt"], row["response_a"], 0, label_idx)
|
| 409 |
+
# chat_b = make_chat(row["prompt"], row["response_b"], 1, label_idx)
|
| 410 |
+
|
| 411 |
+
if all_check or file is None or file == "":
|
| 412 |
+
score_cols = ["avg_winner_model_a", "avg_winner_model_b", "avg_winner_tie"]
|
| 413 |
+
else:
|
| 414 |
+
score_cols = [
|
| 415 |
+
f"winner_model_a_prob_{exps[file]}",
|
| 416 |
+
f"winner_model_b_prob_{exps[file]}",
|
| 417 |
+
f"winner_tie_prob_{exps[file]}",
|
| 418 |
+
]
|
| 419 |
+
|
| 420 |
+
scores = row[score_cols].to_list()
|
| 421 |
+
|
| 422 |
+
if all_check or file is None or file == "":
|
| 423 |
+
loss_col = "avg_loss"
|
| 424 |
+
else:
|
| 425 |
+
loss_col = f"loss_{exps[file]}"
|
| 426 |
+
|
| 427 |
+
loss = row[loss_col]
|
| 428 |
+
|
| 429 |
+
# labels = ["A", "B", "Tie"]
|
| 430 |
+
|
| 431 |
+
return chat_a, chat_b, label, *scores, loss
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
with gr.Blocks() as demo:
|
| 435 |
+
|
| 436 |
+
gr.LoginButton()
|
| 437 |
+
|
| 438 |
+
gr.Markdown(
|
| 439 |
+
"""
|
| 440 |
+
# OOF Visualization
|
| 441 |
+
|
| 442 |
+
This is a demo for visualizing the out-of-fold predictions of a model.
|
| 443 |
+
It currently shows the predictions for the outputs of [this notebook](https://www.kaggle.com/code/kcotton21/lmsys-preds/notebook).
|
| 444 |
+
"""
|
| 445 |
+
)
|
| 446 |
+
with gr.Row():
|
| 447 |
+
with gr.Column():
|
| 448 |
+
file = gr.Dropdown(label="File", choices=[x.split("/")[-1] for x in files])
|
| 449 |
+
with gr.Column():
|
| 450 |
+
all_check = gr.Checkbox(label="Use average loss of all files")
|
| 451 |
+
with gr.Row():
|
| 452 |
+
lower_limit = gr.Slider(
|
| 453 |
+
label="Show samples with loss > this value", minimum=0, maximum=5, value=1
|
| 454 |
+
)
|
| 455 |
+
upper_limit = gr.Slider(
|
| 456 |
+
label="Show samples with loss < this value", minimum=0, maximum=5, value=5
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
# id_ = gr.Number(label="ID")
|
| 460 |
+
idx = gr.Number(visible=True)
|
| 461 |
+
hidden_df = gr.Dataframe(visible=False)
|
| 462 |
+
with gr.Row():
|
| 463 |
+
correct_label = gr.Textbox(label="Correct Label", interactive=False)
|
| 464 |
+
score_a = gr.Textbox(label="Model A Score", interactive=False)
|
| 465 |
+
score_b = gr.Textbox(label="Model B Score", interactive=False)
|
| 466 |
+
score_tie = gr.Textbox(label="Tie Score", interactive=False)
|
| 467 |
+
loss = gr.Textbox(label="Loss", interactive=False)
|
| 468 |
+
with gr.Row():
|
| 469 |
+
with gr.Column():
|
| 470 |
+
prev_btn = gr.Button(value="Previous")
|
| 471 |
+
with gr.Column():
|
| 472 |
+
next_btn = gr.Button(value="Next")
|
| 473 |
+
|
| 474 |
+
with gr.Row():
|
| 475 |
+
with gr.Column():
|
| 476 |
+
chat_a = gr.Chatbot(label="Model A", type="messages", height=1000)
|
| 477 |
+
with gr.Column():
|
| 478 |
+
chat_b = gr.Chatbot(label="Model B", type="messages", height=1000)
|
| 479 |
+
|
| 480 |
+
lower_limit.change(
|
| 481 |
+
filter_df,
|
| 482 |
+
inputs=[lower_limit, upper_limit, file, all_check],
|
| 483 |
+
outputs=[idx, hidden_df],
|
| 484 |
+
)
|
| 485 |
+
upper_limit.change(
|
| 486 |
+
filter_df,
|
| 487 |
+
inputs=[lower_limit, upper_limit, file, all_check],
|
| 488 |
+
outputs=[idx, hidden_df],
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
idx.change(
|
| 492 |
+
show_chats,
|
| 493 |
+
inputs=[idx, hidden_df, file, all_check],
|
| 494 |
+
outputs=[chat_a, chat_b, correct_label, score_a, score_b, score_tie, loss],
|
| 495 |
+
)
|
| 496 |
+
prev_btn.click(lambda x: max(0, x - 1), inputs=idx, outputs=idx)
|
| 497 |
+
next_btn.click(lambda x: x + 1, inputs=idx, outputs=idx)
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
numpy
|
| 3 |
+
pandas
|
| 4 |
+
gradio
|
| 5 |
+
polars
|