# Base Image FROM python:3.10-slim # Build argument for Hugging Face token ARG HF_TOKEN ENV DEBIAN_FRONTEND=noninteractive \ PYTHONUNBUFFERED=1 \ PYTHONDONTWRITEBYTECODE=1 \ HF_TOKEN=${HF_TOKEN} WORKDIR /code # System Dependencies RUN apt-get update && apt-get install -y --no-install-recommends \ build-essential \ git \ curl \ libopenblas-dev \ libomp-dev \ ffmpeg \ && rm -rf /var/lib/apt/lists/* # Copy requirements and install Python dependencies COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt # Hugging Face + model tools RUN pip install --no-cache-dir huggingface-hub sentencepiece accelerate fasttext # Hugging Face cache environment ENV HF_HOME=/models/huggingface \ TRANSFORMERS_CACHE=/models/huggingface \ HUGGINGFACE_HUB_CACHE=/models/huggingface \ HF_HUB_CACHE=/models/huggingface # Created cache dir and set permissions RUN mkdir -p /models/huggingface && chmod -R 777 /models/huggingface RUN python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='facebook/mms-tts-hau')" \ && python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='facebook/mms-tts-eng')" \ && python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='facebook/mms-tts-yor')" \ && find /models/huggingface -name '*.lock' -delete RUN python -c "from transformers import pipeline; pipeline('text-to-speech', model='facebook/mms-tts-hau')" \ && python -c "from transformers import pipeline; pipeline('text-to-speech', model='facebook/mms-tts-eng')" \ && python -c "from transformers import pipeline; pipeline('text-to-speech', model='facebook/mms-tts-yor')" # Models will be downloaded at runtime when HF_TOKEN is available # Copy project files COPY . . EXPOSE 7860 CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]