Update functions.py
Browse files- functions.py +80 -40
functions.py
CHANGED
|
@@ -70,7 +70,7 @@ output_parser = RegexParser(
|
|
| 70 |
)
|
| 71 |
|
| 72 |
system_template="""Use only the following pieces of finance context to answer the users question thoroughly.
|
| 73 |
-
Do not use any information not provided in the context.
|
| 74 |
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 75 |
ALWAYS return a "SOURCES" part in your answer.
|
| 76 |
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
|
@@ -126,6 +126,13 @@ def load_asr_model(asr_model_name):
|
|
| 126 |
|
| 127 |
return asr_model
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
@st.experimental_singleton(suppress_st_warning=True)
|
| 130 |
def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
|
| 131 |
|
|
@@ -217,54 +224,87 @@ def get_spacy():
|
|
| 217 |
@st.experimental_memo(suppress_st_warning=True)
|
| 218 |
def inference(link, upload, _asr_model):
|
| 219 |
'''Convert Youtube video or Audio upload to text'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
|
|
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
| 241 |
|
| 242 |
-
|
| 243 |
-
audio_file = AudioSegment.from_file(path, format="mp4")
|
| 244 |
-
|
| 245 |
-
# set chunk size to 24mb (in bytes)
|
| 246 |
-
chunk_size = 24 * 1024 * 1024
|
| 247 |
|
| 248 |
-
#
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
# iterate over each chunk and export it as a separate file
|
| 255 |
-
for i, chunk in enumerate(audio_file[::chunk_size]):
|
| 256 |
-
chunk.export(f"output/chunk_{i}.mp4", format="mp4")
|
| 257 |
-
audio_chunks.append(f"output/chunk_{i}.mp4")
|
| 258 |
|
|
|
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
elif upload:
|
| 265 |
-
results = _asr_model.trasncribe(upload, task='transcribe', language='en')
|
| 266 |
|
| 267 |
-
|
|
|
|
| 268 |
|
| 269 |
@st.experimental_memo(suppress_st_warning=True)
|
| 270 |
def sentiment_pipe(earnings_text):
|
|
|
|
| 70 |
)
|
| 71 |
|
| 72 |
system_template="""Use only the following pieces of finance context to answer the users question thoroughly.
|
| 73 |
+
Do not use any information not provided in the context and remember you are a finance expert.
|
| 74 |
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 75 |
ALWAYS return a "SOURCES" part in your answer.
|
| 76 |
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
|
|
|
| 126 |
|
| 127 |
return asr_model
|
| 128 |
|
| 129 |
+
@st.experimental_singleton(suppress_st_warning=True)
|
| 130 |
+
def load_whisper_api(audio):
|
| 131 |
+
file = open(audio, "rb")
|
| 132 |
+
transcript = openai.Audio.translate("whisper-1", file)
|
| 133 |
+
|
| 134 |
+
return transcript
|
| 135 |
+
|
| 136 |
@st.experimental_singleton(suppress_st_warning=True)
|
| 137 |
def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
|
| 138 |
|
|
|
|
| 224 |
@st.experimental_memo(suppress_st_warning=True)
|
| 225 |
def inference(link, upload, _asr_model):
|
| 226 |
'''Convert Youtube video or Audio upload to text'''
|
| 227 |
+
|
| 228 |
+
try:
|
| 229 |
+
|
| 230 |
+
if validators.url(link):
|
| 231 |
+
|
| 232 |
+
yt = YouTube(link)
|
| 233 |
+
title = yt.title
|
| 234 |
|
| 235 |
+
#Get audio file from YT
|
| 236 |
+
audio_file = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
|
| 237 |
|
| 238 |
+
#Get size of audio file
|
| 239 |
+
audio_size = round(os.path.getsize(path)/(1024*1024),1)
|
| 240 |
+
|
| 241 |
+
#Check if file is > 24mb, if not then use Whisper API
|
| 242 |
+
if audio_size <= 25:
|
| 243 |
+
|
| 244 |
+
#Use whisper API
|
| 245 |
+
results = load_whisper_api(audio_file)['text']
|
| 246 |
+
|
| 247 |
+
else:
|
| 248 |
+
|
| 249 |
+
st.write('File size larger than 24mb, applying chunking and transcription')
|
| 250 |
+
|
| 251 |
+
song = AudioSegment.from_file("audio.mp4", format='mp4')
|
| 252 |
+
|
| 253 |
+
# PyDub handles time in milliseconds
|
| 254 |
+
twenty_minutes = 20 * 60 * 1000
|
| 255 |
+
|
| 256 |
+
chunks = song[::twenty_minutes]
|
| 257 |
+
|
| 258 |
+
transcriptions = []
|
| 259 |
+
|
| 260 |
+
for i, chunk in enumerate(chunks):
|
| 261 |
+
chunk.export(f'output/chunk_{i}.mp4', format='mp4')
|
| 262 |
+
transcriptions.append(load_whisper_api('output/chunk_{i}.mp4')['text'])
|
| 263 |
+
|
| 264 |
+
results = ','.join(transcriptions)
|
| 265 |
|
| 266 |
+
return results, yt.title
|
| 267 |
|
| 268 |
+
elif upload:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
+
#Get size of audio file
|
| 271 |
+
audio_size = round(os.path.getsize(path)/(1024*1024),1)
|
| 272 |
+
|
| 273 |
+
#Check if file is > 24mb, if not then use Whisper API
|
| 274 |
+
if audio_size <= 25:
|
| 275 |
+
|
| 276 |
+
#Use whisper API
|
| 277 |
+
results = load_whisper_api(audio_file)['text']
|
| 278 |
+
|
| 279 |
+
else:
|
| 280 |
+
|
| 281 |
+
st.write('File size larger than 24mb, applying chunking and transcription')
|
| 282 |
+
|
| 283 |
+
song = AudioSegment.from_file("audio.mp4", format='mp4')
|
| 284 |
+
|
| 285 |
+
# PyDub handles time in milliseconds
|
| 286 |
+
twenty_minutes = 20 * 60 * 1000
|
| 287 |
+
|
| 288 |
+
chunks = song[::twenty_minutes]
|
| 289 |
+
|
| 290 |
+
transcriptions = []
|
| 291 |
+
|
| 292 |
+
for i, chunk in enumerate(chunks):
|
| 293 |
+
chunk.export(f'output/chunk_{i}.mp4', format='mp4')
|
| 294 |
+
transcriptions.append(load_whisper_api('output/chunk_{i}.mp4')['text'])
|
| 295 |
+
|
| 296 |
+
results = ','.join(transcriptions)
|
| 297 |
|
| 298 |
+
return results, "Transcribed Earnings Audio"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
+
except:
|
| 301 |
|
| 302 |
+
st.write('Whisper API Error, using Whisper module from GitHub, might take longer than expected')
|
| 303 |
+
|
| 304 |
+
results = _asr_model.transcribe(path, task='transcribe', language='en')
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
+
return results['text'], yt.title
|
| 307 |
+
|
| 308 |
|
| 309 |
@st.experimental_memo(suppress_st_warning=True)
|
| 310 |
def sentiment_pipe(earnings_text):
|