Update functions.py
Browse files- functions.py +97 -86
functions.py
CHANGED
|
@@ -145,9 +145,10 @@ def get_yt_audio(url):
|
|
| 145 |
'''Get YT video from given URL link'''
|
| 146 |
yt = YouTube(url)
|
| 147 |
|
|
|
|
|
|
|
| 148 |
# Get the first available audio stream and download it
|
| 149 |
audio_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
| 150 |
-
title = audio_stream.split('\\')[-1].split('.')[0]
|
| 151 |
|
| 152 |
return audio_stream, title
|
| 153 |
|
|
@@ -160,6 +161,101 @@ def load_whisper_api(audio):
|
|
| 160 |
|
| 161 |
return transcript
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
@st.cache_data
|
| 164 |
def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
|
| 165 |
|
|
@@ -299,91 +395,6 @@ def get_spacy():
|
|
| 299 |
nlp = en_core_web_lg.load()
|
| 300 |
return nlp
|
| 301 |
|
| 302 |
-
|
| 303 |
-
def inference(link, upload, _asr_model):
|
| 304 |
-
'''Convert Youtube video or Audio upload to text'''
|
| 305 |
-
|
| 306 |
-
try:
|
| 307 |
-
|
| 308 |
-
if validators.url(link):
|
| 309 |
-
|
| 310 |
-
audio_file, title = get_yt_audio(link)
|
| 311 |
-
# title = yt.title
|
| 312 |
-
|
| 313 |
-
if 'audio' not in st.session_state:
|
| 314 |
-
st.session_state['audio'] = audio_file
|
| 315 |
-
|
| 316 |
-
#Get size of audio file
|
| 317 |
-
audio_size = round(os.path.getsize(audio_file)/(1024*1024),1)
|
| 318 |
-
|
| 319 |
-
#Check if file is > 24mb, if not then use Whisper API
|
| 320 |
-
if audio_size <= 25:
|
| 321 |
-
|
| 322 |
-
#Use whisper API
|
| 323 |
-
results = load_whisper_api(audio_file)['text']
|
| 324 |
-
|
| 325 |
-
else:
|
| 326 |
-
|
| 327 |
-
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
|
| 328 |
-
|
| 329 |
-
song = AudioSegment.from_file(audio_file, format='mp3')
|
| 330 |
-
|
| 331 |
-
# PyDub handles time in milliseconds
|
| 332 |
-
twenty_minutes = 20 * 60 * 1000
|
| 333 |
-
|
| 334 |
-
chunks = song[::twenty_minutes]
|
| 335 |
-
|
| 336 |
-
transcriptions = []
|
| 337 |
-
|
| 338 |
-
for i, chunk in enumerate(chunks):
|
| 339 |
-
chunk.export(f'output/chunk_{i}.mp3', format='mp3')
|
| 340 |
-
transcriptions.append(load_whisper_api(f'output/chunk_{i}.mp3')['text'])
|
| 341 |
-
|
| 342 |
-
results = ','.join(transcriptions)
|
| 343 |
-
|
| 344 |
-
return results, title
|
| 345 |
-
|
| 346 |
-
elif _upload:
|
| 347 |
-
|
| 348 |
-
#Get size of audio file
|
| 349 |
-
audio_size = round(os.path.getsize(_upload)/(1024*1024),1)
|
| 350 |
-
|
| 351 |
-
#Check if file is > 24mb, if not then use Whisper API
|
| 352 |
-
if audio_size <= 25:
|
| 353 |
-
|
| 354 |
-
#Use whisper API
|
| 355 |
-
results = load_whisper_api(_upload)['text']
|
| 356 |
-
|
| 357 |
-
else:
|
| 358 |
-
|
| 359 |
-
st.write('File size larger than 24mb, applying chunking and transcription')
|
| 360 |
-
|
| 361 |
-
song = AudioSegment.from_file(_upload)
|
| 362 |
-
|
| 363 |
-
# PyDub handles time in milliseconds
|
| 364 |
-
twenty_minutes = 20 * 60 * 1000
|
| 365 |
-
|
| 366 |
-
chunks = song[::twenty_minutes]
|
| 367 |
-
|
| 368 |
-
transcriptions = []
|
| 369 |
-
|
| 370 |
-
for i, chunk in enumerate(chunks):
|
| 371 |
-
chunk.export(f'output/chunk_{i}.mp3', format='mp3')
|
| 372 |
-
transcriptions.append(load_whisper_api('output/chunk_{i}.mp3')['text'])
|
| 373 |
-
|
| 374 |
-
results = ','.join(transcriptions)
|
| 375 |
-
|
| 376 |
-
return results, "Transcribed Earnings Audio"
|
| 377 |
-
|
| 378 |
-
except Exception as e:
|
| 379 |
-
|
| 380 |
-
st.error(f'''Whisper API Error: {e},
|
| 381 |
-
Using Whisper module from GitHub, might take longer than expected''',icon="🚨")
|
| 382 |
-
|
| 383 |
-
results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
|
| 384 |
-
|
| 385 |
-
return results['text'], title
|
| 386 |
-
|
| 387 |
|
| 388 |
@st.cache_data
|
| 389 |
def sentiment_pipe(earnings_text):
|
|
|
|
| 145 |
'''Get YT video from given URL link'''
|
| 146 |
yt = YouTube(url)
|
| 147 |
|
| 148 |
+
title = yt.title
|
| 149 |
+
|
| 150 |
# Get the first available audio stream and download it
|
| 151 |
audio_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
|
|
|
| 152 |
|
| 153 |
return audio_stream, title
|
| 154 |
|
|
|
|
| 161 |
|
| 162 |
return transcript
|
| 163 |
|
| 164 |
+
def inference(link, upload, _asr_model):
|
| 165 |
+
'''Convert Youtube video or Audio upload to text'''
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
|
| 169 |
+
if validators.url(link):
|
| 170 |
+
|
| 171 |
+
st.info("`Downloading YT audio...`")
|
| 172 |
+
|
| 173 |
+
audio_file, title = get_yt_audio(link)
|
| 174 |
+
|
| 175 |
+
if 'audio' not in st.session_state:
|
| 176 |
+
st.session_state['audio'] = audio_file
|
| 177 |
+
|
| 178 |
+
#Get size of audio file
|
| 179 |
+
audio_size = round(os.path.getsize(audio_file)/(1024*1024),1)
|
| 180 |
+
|
| 181 |
+
#Check if file is > 24mb, if not then use Whisper API
|
| 182 |
+
if audio_size <= 25:
|
| 183 |
+
|
| 184 |
+
st.info("`Transcribing YT audio...`")
|
| 185 |
+
|
| 186 |
+
#Use whisper API
|
| 187 |
+
results = load_whisper_api(audio_file)['text']
|
| 188 |
+
|
| 189 |
+
else:
|
| 190 |
+
|
| 191 |
+
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
|
| 192 |
+
|
| 193 |
+
song = AudioSegment.from_file(audio_file, format='mp4')
|
| 194 |
+
|
| 195 |
+
# PyDub handles time in milliseconds
|
| 196 |
+
twenty_minutes = 20 * 60 * 1000
|
| 197 |
+
|
| 198 |
+
chunks = song[::twenty_minutes]
|
| 199 |
+
|
| 200 |
+
transcriptions = []
|
| 201 |
+
|
| 202 |
+
for i, chunk in enumerate(chunks):
|
| 203 |
+
chunk.export(f'output/chunk_{i}.mp4', format='mp4')
|
| 204 |
+
transcriptions.append(load_whisper_api(f'output/chunk_{i}.mp4')['text'])
|
| 205 |
+
|
| 206 |
+
results = ','.join(transcriptions)
|
| 207 |
+
|
| 208 |
+
st.info("`YT Video transcription process complete...`")
|
| 209 |
+
|
| 210 |
+
return results, title
|
| 211 |
+
|
| 212 |
+
elif _upload:
|
| 213 |
+
|
| 214 |
+
#Get size of audio file
|
| 215 |
+
audio_size = round(os.path.getsize(_upload)/(1024*1024),1)
|
| 216 |
+
|
| 217 |
+
#Check if file is > 24mb, if not then use Whisper API
|
| 218 |
+
if audio_size <= 25:
|
| 219 |
+
|
| 220 |
+
st.info("`Transcribing uploaded audio...`")
|
| 221 |
+
|
| 222 |
+
#Use whisper API
|
| 223 |
+
results = load_whisper_api(_upload)['text']
|
| 224 |
+
|
| 225 |
+
else:
|
| 226 |
+
|
| 227 |
+
st.write('File size larger than 24mb, applying chunking and transcription')
|
| 228 |
+
|
| 229 |
+
song = AudioSegment.from_file(_upload)
|
| 230 |
+
|
| 231 |
+
# PyDub handles time in milliseconds
|
| 232 |
+
twenty_minutes = 20 * 60 * 1000
|
| 233 |
+
|
| 234 |
+
chunks = song[::twenty_minutes]
|
| 235 |
+
|
| 236 |
+
transcriptions = []
|
| 237 |
+
|
| 238 |
+
st.info("`Transcribing uploaded audio...`")
|
| 239 |
+
|
| 240 |
+
for i, chunk in enumerate(chunks):
|
| 241 |
+
chunk.export(f'output/chunk_{i}.mp3', format='mp3')
|
| 242 |
+
transcriptions.append(load_whisper_api('output/chunk_{i}.mp3')['text'])
|
| 243 |
+
|
| 244 |
+
results = ','.join(transcriptions)
|
| 245 |
+
|
| 246 |
+
st.info("`Uploaded audio transcription process complete...`")
|
| 247 |
+
|
| 248 |
+
return results, "Transcribed Earnings Audio"
|
| 249 |
+
|
| 250 |
+
except Exception as e:
|
| 251 |
+
|
| 252 |
+
st.error(f'''Whisper API Error: {e},
|
| 253 |
+
Using Whisper module from GitHub, might take longer than expected''',icon="🚨")
|
| 254 |
+
|
| 255 |
+
results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
|
| 256 |
+
|
| 257 |
+
return results['text'], title
|
| 258 |
+
|
| 259 |
@st.cache_data
|
| 260 |
def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
|
| 261 |
|
|
|
|
| 395 |
nlp = en_core_web_lg.load()
|
| 396 |
return nlp
|
| 397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
@st.cache_data
|
| 400 |
def sentiment_pipe(earnings_text):
|