Create new file
Browse files- functions.py +266 -0
functions.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import whisper
|
| 2 |
+
import os
|
| 3 |
+
from pytube import YouTube
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly_express as px
|
| 6 |
+
import nltk
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
| 9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 10 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import en_core_web_lg
|
| 13 |
+
|
| 14 |
+
nltk.download('punkt')
|
| 15 |
+
|
| 16 |
+
from nltk import sent_tokenize
|
| 17 |
+
|
| 18 |
+
@st.experimental_singleton(suppress_st_warning=True)
|
| 19 |
+
def load_models():
|
| 20 |
+
asr_model = whisper.load_model("small")
|
| 21 |
+
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 22 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 23 |
+
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
| 24 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 25 |
+
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
| 26 |
+
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn")
|
| 27 |
+
ner_pip = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
| 28 |
+
sbert = SentenceTransformer("all-mpnet-base-v2")
|
| 29 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
| 30 |
+
|
| 31 |
+
return asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder
|
| 32 |
+
|
| 33 |
+
@st.experimental_singleton(suppress_st_warning=True)
|
| 34 |
+
def get_spacy():
|
| 35 |
+
nlp = en_core_web_lg.load()
|
| 36 |
+
return nlp
|
| 37 |
+
|
| 38 |
+
@st.experimental_memo(suppress_st_warning=True)
|
| 39 |
+
def inference(link, upload):
|
| 40 |
+
'''Convert Youtube video or Audio upload to text'''
|
| 41 |
+
|
| 42 |
+
if validators.url(link):
|
| 43 |
+
|
| 44 |
+
yt = YouTube(link)
|
| 45 |
+
title = yt.title
|
| 46 |
+
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
|
| 47 |
+
options = whisper.DecodingOptions(without_timestamps=True)
|
| 48 |
+
results = asr_model.transcribe(path)
|
| 49 |
+
|
| 50 |
+
return results, yt.title
|
| 51 |
+
|
| 52 |
+
elif upload:
|
| 53 |
+
results = asr_model.transcribe(upload)
|
| 54 |
+
|
| 55 |
+
return results, "Transcribed Earnings Audio"
|
| 56 |
+
|
| 57 |
+
@st.experimental_memo(suppress_st_warning=True)
|
| 58 |
+
def sentiment_pipe(earnings_text):
|
| 59 |
+
'''Determine the sentiment of the text'''
|
| 60 |
+
|
| 61 |
+
earnings_sentences = sent_tokenize(earnings_text)
|
| 62 |
+
earnings_sentiment = sent_pipe(earnings_sentences)
|
| 63 |
+
|
| 64 |
+
return earnings_sentiment, earnings_sentences
|
| 65 |
+
|
| 66 |
+
@st.experimental_memo(suppress_st_warning=True)
|
| 67 |
+
def preprocess_plain_text(text,window_size=3):
|
| 68 |
+
'''Preprocess text for semantic search'''
|
| 69 |
+
|
| 70 |
+
text = text.encode("ascii", "ignore").decode() # unicode
|
| 71 |
+
text = re.sub(r"https*\S+", " ", text) # url
|
| 72 |
+
text = re.sub(r"@\S+", " ", text) # mentions
|
| 73 |
+
text = re.sub(r"#\S+", " ", text) # hastags
|
| 74 |
+
text = re.sub(r"\s{2,}", " ", text) # over spaces
|
| 75 |
+
#text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
|
| 76 |
+
|
| 77 |
+
#break into lines and remove leading and trailing space on each
|
| 78 |
+
lines = [line.strip() for line in text.splitlines()]
|
| 79 |
+
|
| 80 |
+
# #break multi-headlines into a line each
|
| 81 |
+
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
|
| 82 |
+
|
| 83 |
+
# # drop blank lines
|
| 84 |
+
text = '\n'.join(chunk for chunk in chunks if chunk)
|
| 85 |
+
|
| 86 |
+
## We split this article into paragraphs and then every paragraph into sentences
|
| 87 |
+
paragraphs = []
|
| 88 |
+
for paragraph in text.replace('\n',' ').split("\n\n"):
|
| 89 |
+
if len(paragraph.strip()) > 0:
|
| 90 |
+
paragraphs.append(sent_tokenize(paragraph.strip()))
|
| 91 |
+
|
| 92 |
+
#We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size
|
| 93 |
+
#Smaller value: Context from other sentences might get lost
|
| 94 |
+
#Lager values: More context from the paragraph remains, but results are longer
|
| 95 |
+
window_size = window_size
|
| 96 |
+
passages = []
|
| 97 |
+
for paragraph in paragraphs:
|
| 98 |
+
for start_idx in range(0, len(paragraph), window_size):
|
| 99 |
+
end_idx = min(start_idx+window_size, len(paragraph))
|
| 100 |
+
passages.append(" ".join(paragraph[start_idx:end_idx]))
|
| 101 |
+
|
| 102 |
+
print(f"Sentences: {sum([len(p) for p in paragraphs])}")
|
| 103 |
+
print(f"Passages: {len(passages)}")
|
| 104 |
+
|
| 105 |
+
return passages
|
| 106 |
+
|
| 107 |
+
@st.experimental_memo(suppress_st_warning=True)
|
| 108 |
+
def chunk_clean_text(text):
|
| 109 |
+
|
| 110 |
+
"""Chunk text longer than 500 tokens"""
|
| 111 |
+
|
| 112 |
+
article = nlp(text)
|
| 113 |
+
sentences = [i.text for i in list(article.sents)]
|
| 114 |
+
|
| 115 |
+
current_chunk = 0
|
| 116 |
+
chunks = []
|
| 117 |
+
|
| 118 |
+
for sentence in sentences:
|
| 119 |
+
if len(chunks) == current_chunk + 1:
|
| 120 |
+
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
|
| 121 |
+
chunks[current_chunk].extend(sentence.split(" "))
|
| 122 |
+
else:
|
| 123 |
+
current_chunk += 1
|
| 124 |
+
chunks.append(sentence.split(" "))
|
| 125 |
+
else:
|
| 126 |
+
chunks.append(sentence.split(" "))
|
| 127 |
+
|
| 128 |
+
for chunk_id in range(len(chunks)):
|
| 129 |
+
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
| 130 |
+
|
| 131 |
+
return chunks
|
| 132 |
+
|
| 133 |
+
def summary_downloader(raw_text):
|
| 134 |
+
|
| 135 |
+
b64 = base64.b64encode(raw_text.encode()).decode()
|
| 136 |
+
new_filename = "new_text_file_{}_.txt".format(time_str)
|
| 137 |
+
st.markdown("#### Download Summary as a File ###")
|
| 138 |
+
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
| 139 |
+
st.markdown(href,unsafe_allow_html=True)
|
| 140 |
+
|
| 141 |
+
def get_all_entities_per_sentence(text):
|
| 142 |
+
doc = nlp(''.join(text))
|
| 143 |
+
|
| 144 |
+
sentences = list(doc.sents)
|
| 145 |
+
|
| 146 |
+
entities_all_sentences = []
|
| 147 |
+
for sentence in sentences:
|
| 148 |
+
entities_this_sentence = []
|
| 149 |
+
|
| 150 |
+
# SPACY ENTITIES
|
| 151 |
+
for entity in sentence.ents:
|
| 152 |
+
entities_this_sentence.append(str(entity))
|
| 153 |
+
|
| 154 |
+
# FLAIR ENTITIES (CURRENTLY NOT USED)
|
| 155 |
+
# sentence_entities = Sentence(str(sentence))
|
| 156 |
+
# tagger.predict(sentence_entities)
|
| 157 |
+
# for entity in sentence_entities.get_spans('ner'):
|
| 158 |
+
# entities_this_sentence.append(entity.text)
|
| 159 |
+
|
| 160 |
+
# XLM ENTITIES
|
| 161 |
+
entities_xlm = [entity["word"] for entity in ner_model(str(sentence))]
|
| 162 |
+
for entity in entities_xlm:
|
| 163 |
+
entities_this_sentence.append(str(entity))
|
| 164 |
+
|
| 165 |
+
entities_all_sentences.append(entities_this_sentence)
|
| 166 |
+
|
| 167 |
+
return entities_all_sentences
|
| 168 |
+
|
| 169 |
+
def get_all_entities(text):
|
| 170 |
+
all_entities_per_sentence = get_all_entities_per_sentence(text)
|
| 171 |
+
return list(itertools.chain.from_iterable(all_entities_per_sentence))
|
| 172 |
+
|
| 173 |
+
def get_and_compare_entities(article_content,summary_output):
|
| 174 |
+
|
| 175 |
+
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
|
| 176 |
+
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
| 177 |
+
|
| 178 |
+
all_entities_per_sentence = get_all_entities_per_sentence(summary_output)
|
| 179 |
+
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
| 180 |
+
|
| 181 |
+
matched_entities = []
|
| 182 |
+
unmatched_entities = []
|
| 183 |
+
for entity in entities_summary:
|
| 184 |
+
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
|
| 185 |
+
matched_entities.append(entity)
|
| 186 |
+
elif any(
|
| 187 |
+
np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False),
|
| 188 |
+
sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for
|
| 189 |
+
art_entity in entities_article):
|
| 190 |
+
matched_entities.append(entity)
|
| 191 |
+
else:
|
| 192 |
+
unmatched_entities.append(entity)
|
| 193 |
+
|
| 194 |
+
matched_entities = list(dict.fromkeys(matched_entities))
|
| 195 |
+
unmatched_entities = list(dict.fromkeys(unmatched_entities))
|
| 196 |
+
|
| 197 |
+
matched_entities_to_remove = []
|
| 198 |
+
unmatched_entities_to_remove = []
|
| 199 |
+
|
| 200 |
+
for entity in matched_entities:
|
| 201 |
+
for substring_entity in matched_entities:
|
| 202 |
+
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
| 203 |
+
matched_entities_to_remove.append(entity)
|
| 204 |
+
|
| 205 |
+
for entity in unmatched_entities:
|
| 206 |
+
for substring_entity in unmatched_entities:
|
| 207 |
+
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
| 208 |
+
unmatched_entities_to_remove.append(entity)
|
| 209 |
+
|
| 210 |
+
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
|
| 211 |
+
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))
|
| 212 |
+
|
| 213 |
+
for entity in matched_entities_to_remove:
|
| 214 |
+
matched_entities.remove(entity)
|
| 215 |
+
for entity in unmatched_entities_to_remove:
|
| 216 |
+
unmatched_entities.remove(entity)
|
| 217 |
+
|
| 218 |
+
return matched_entities, unmatched_entities
|
| 219 |
+
|
| 220 |
+
def highlight_entities(article_content,summary_output):
|
| 221 |
+
|
| 222 |
+
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
|
| 223 |
+
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
|
| 224 |
+
markdown_end = "</mark>"
|
| 225 |
+
|
| 226 |
+
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output)
|
| 227 |
+
|
| 228 |
+
print(summary_output)
|
| 229 |
+
|
| 230 |
+
for entity in matched_entities:
|
| 231 |
+
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output)
|
| 232 |
+
|
| 233 |
+
for entity in unmatched_entities:
|
| 234 |
+
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output)
|
| 235 |
+
|
| 236 |
+
print("")
|
| 237 |
+
print(summary_output)
|
| 238 |
+
|
| 239 |
+
print("")
|
| 240 |
+
print(summary_output)
|
| 241 |
+
|
| 242 |
+
soup = BeautifulSoup(summary_output, features="html.parser")
|
| 243 |
+
|
| 244 |
+
return HTML_WRAPPER.format(soup)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def display_df_as_table(model,top_k,score='score'):
|
| 248 |
+
'''Display the df with text and scores as a table'''
|
| 249 |
+
|
| 250 |
+
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
|
| 251 |
+
df['Score'] = round(df['Score'],2)
|
| 252 |
+
|
| 253 |
+
return df
|
| 254 |
+
|
| 255 |
+
def make_spans(text,results):
|
| 256 |
+
results_list = []
|
| 257 |
+
for i in range(len(results)):
|
| 258 |
+
results_list.append(results[i]['label'])
|
| 259 |
+
facts_spans = []
|
| 260 |
+
facts_spans = list(zip(sent_tokenizer(text),results_list))
|
| 261 |
+
return facts_spans
|
| 262 |
+
|
| 263 |
+
##Fiscal Sentiment by Sentence
|
| 264 |
+
def fin_ext(text):
|
| 265 |
+
results = remote_clx(sent_tokenizer(text))
|
| 266 |
+
return make_spans(text,results)
|