Delete apps.py
Browse files
apps.py
DELETED
|
@@ -1,140 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import preprocessor,helper
|
| 3 |
-
import matplotlib.pyplot as plt
|
| 4 |
-
import seaborn as sns
|
| 5 |
-
|
| 6 |
-
st.sidebar.title("Whatsapp Chat Analyzer")
|
| 7 |
-
|
| 8 |
-
uploaded_file = st.sidebar.file_uploader("Choose a file")
|
| 9 |
-
|
| 10 |
-
if uploaded_file is not None:
|
| 11 |
-
bytes_data = uploaded_file.getvalue()
|
| 12 |
-
data = bytes_data.decode("utf-8")
|
| 13 |
-
df = preprocessor.preprocess(data)
|
| 14 |
-
|
| 15 |
-
# fetch unique users
|
| 16 |
-
user_list = df['user'].unique().tolist()
|
| 17 |
-
user_list.remove('group_notification')
|
| 18 |
-
user_list.sort()
|
| 19 |
-
user_list.insert(0,"Overall")
|
| 20 |
-
|
| 21 |
-
selected_user = st.sidebar.selectbox("Show analysis wrt",user_list)
|
| 22 |
-
|
| 23 |
-
if st.sidebar.button("Show Analysis"):
|
| 24 |
-
|
| 25 |
-
# Stats Area
|
| 26 |
-
num_messages, words, num_media_messages, num_links = helper.fetch_stats(selected_user,df)
|
| 27 |
-
st.title("Top Statistics")
|
| 28 |
-
col1, col2, col3, col4 = st.columns(4)
|
| 29 |
-
|
| 30 |
-
with col1:
|
| 31 |
-
st.header("Total Messages")
|
| 32 |
-
st.title(num_messages)
|
| 33 |
-
with col2:
|
| 34 |
-
st.header("Total Words")
|
| 35 |
-
st.title(words)
|
| 36 |
-
with col3:
|
| 37 |
-
st.header("Media Shared")
|
| 38 |
-
st.title(num_media_messages)
|
| 39 |
-
with col4:
|
| 40 |
-
st.header("Links Shared")
|
| 41 |
-
st.title(num_links)
|
| 42 |
-
|
| 43 |
-
# monthly timeline
|
| 44 |
-
st.title("Monthly Timeline")
|
| 45 |
-
timeline = helper.monthly_timeline(selected_user,df)
|
| 46 |
-
fig,ax = plt.subplots()
|
| 47 |
-
ax.plot(timeline['time'], timeline['message'],color='green')
|
| 48 |
-
plt.xticks(rotation='vertical')
|
| 49 |
-
st.pyplot(fig)
|
| 50 |
-
|
| 51 |
-
# daily timeline
|
| 52 |
-
st.title("Daily Timeline")
|
| 53 |
-
daily_timeline = helper.daily_timeline(selected_user, df)
|
| 54 |
-
fig, ax = plt.subplots()
|
| 55 |
-
ax.plot(daily_timeline['only_date'], daily_timeline['message'], color='black')
|
| 56 |
-
plt.xticks(rotation='vertical')
|
| 57 |
-
st.pyplot(fig)
|
| 58 |
-
|
| 59 |
-
# activity map
|
| 60 |
-
st.title('Activity Map')
|
| 61 |
-
col1,col2 = st.columns(2)
|
| 62 |
-
|
| 63 |
-
with col1:
|
| 64 |
-
st.header("Most busy day")
|
| 65 |
-
busy_day = helper.week_activity_map(selected_user,df)
|
| 66 |
-
fig,ax = plt.subplots()
|
| 67 |
-
ax.bar(busy_day.index,busy_day.values,color='purple')
|
| 68 |
-
plt.xticks(rotation='vertical')
|
| 69 |
-
st.pyplot(fig)
|
| 70 |
-
|
| 71 |
-
with col2:
|
| 72 |
-
st.header("Most busy month")
|
| 73 |
-
busy_month = helper.month_activity_map(selected_user, df)
|
| 74 |
-
fig, ax = plt.subplots()
|
| 75 |
-
ax.bar(busy_month.index, busy_month.values,color='orange')
|
| 76 |
-
plt.xticks(rotation='vertical')
|
| 77 |
-
st.pyplot(fig)
|
| 78 |
-
|
| 79 |
-
st.title("Weekly Activity Map")
|
| 80 |
-
user_heatmap = helper.activity_heatmap(selected_user,df)
|
| 81 |
-
fig,ax = plt.subplots()
|
| 82 |
-
ax = sns.heatmap(user_heatmap)
|
| 83 |
-
st.pyplot(fig)
|
| 84 |
-
|
| 85 |
-
# finding the busiest users in the group(Group level)
|
| 86 |
-
if selected_user == 'Overall':
|
| 87 |
-
st.title('Most Busy Users')
|
| 88 |
-
x,new_df = helper.most_busy_users(df)
|
| 89 |
-
fig, ax = plt.subplots()
|
| 90 |
-
|
| 91 |
-
col1, col2 = st.columns(2)
|
| 92 |
-
|
| 93 |
-
with col1:
|
| 94 |
-
ax.bar(x.index, x.values,color='red')
|
| 95 |
-
plt.xticks(rotation='vertical')
|
| 96 |
-
st.pyplot(fig)
|
| 97 |
-
with col2:
|
| 98 |
-
st.dataframe(new_df)
|
| 99 |
-
|
| 100 |
-
# WordCloud
|
| 101 |
-
st.title("Wordcloud")
|
| 102 |
-
df_wc = helper.create_wordcloud(selected_user,df)
|
| 103 |
-
fig,ax = plt.subplots()
|
| 104 |
-
ax.imshow(df_wc)
|
| 105 |
-
st.pyplot(fig)
|
| 106 |
-
|
| 107 |
-
# most common words
|
| 108 |
-
most_common_df = helper.most_common_words(selected_user,df)
|
| 109 |
-
|
| 110 |
-
fig,ax = plt.subplots()
|
| 111 |
-
|
| 112 |
-
ax.barh(most_common_df[0],most_common_df[1])
|
| 113 |
-
plt.xticks(rotation='vertical')
|
| 114 |
-
|
| 115 |
-
st.title('Most commmon words')
|
| 116 |
-
st.pyplot(fig)
|
| 117 |
-
|
| 118 |
-
# emoji analysis
|
| 119 |
-
emoji_df = helper.emoji_helper(selected_user,df)
|
| 120 |
-
st.title("Emoji Analysis")
|
| 121 |
-
|
| 122 |
-
col1,col2 = st.columns(2)
|
| 123 |
-
|
| 124 |
-
with col1:
|
| 125 |
-
st.dataframe(emoji_df)
|
| 126 |
-
with col2:
|
| 127 |
-
fig,ax = plt.subplots()
|
| 128 |
-
ax.pie(emoji_df[1].head(),labels=emoji_df[0].head(),autopct="%0.2f")
|
| 129 |
-
st.pyplot(fig)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|