Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
kennymckormick
commited on
Commit
·
a6e43e6
1
Parent(s):
b11357b
update
Browse files- .pre-commit-config.yaml +33 -0
- README.md +1 -1
- app.py +37 -32
- gen_table.py +146 -0
- lb_info.py → meta_data.py +1 -136
- requirements.txt +1 -1
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
exclude: |
|
| 2 |
+
(?x)^(
|
| 3 |
+
meta_data.py
|
| 4 |
+
)
|
| 5 |
+
repos:
|
| 6 |
+
- repo: https://github.com/PyCQA/flake8
|
| 7 |
+
rev: 5.0.4
|
| 8 |
+
hooks:
|
| 9 |
+
- id: flake8
|
| 10 |
+
args: ["--max-line-length=120", "--ignore=F401,F403,F405,E402"]
|
| 11 |
+
exclude: ^configs/
|
| 12 |
+
- repo: https://github.com/PyCQA/isort
|
| 13 |
+
rev: 5.11.5
|
| 14 |
+
hooks:
|
| 15 |
+
- id: isort
|
| 16 |
+
- repo: https://github.com/pre-commit/mirrors-yapf
|
| 17 |
+
rev: v0.30.0
|
| 18 |
+
hooks:
|
| 19 |
+
- id: yapf
|
| 20 |
+
args: ["--style={column_limit=120}"]
|
| 21 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 22 |
+
rev: v3.1.0
|
| 23 |
+
hooks:
|
| 24 |
+
- id: trailing-whitespace
|
| 25 |
+
- id: check-yaml
|
| 26 |
+
- id: end-of-file-fixer
|
| 27 |
+
- id: requirements-txt-fixer
|
| 28 |
+
- id: double-quote-string-fixer
|
| 29 |
+
- id: check-merge-conflict
|
| 30 |
+
- id: fix-encoding-pragma
|
| 31 |
+
args: ["--remove"]
|
| 32 |
+
- id: mixed-line-ending
|
| 33 |
+
args: ["--fix=lf"]
|
README.md
CHANGED
|
@@ -12,4 +12,4 @@ tags:
|
|
| 12 |
- leaderboard
|
| 13 |
---
|
| 14 |
|
| 15 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 12 |
- leaderboard
|
| 13 |
---
|
| 14 |
|
| 15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import abc
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
|
| 5 |
with gr.Blocks() as demo:
|
| 6 |
struct = load_results()
|
|
@@ -24,30 +27,30 @@ with gr.Blocks() as demo:
|
|
| 24 |
checkbox_group = gr.CheckboxGroup(
|
| 25 |
choices=check_box['all'],
|
| 26 |
value=check_box['required'],
|
| 27 |
-
label=
|
| 28 |
interactive=True,
|
| 29 |
)
|
| 30 |
headers = check_box['essential'] + checkbox_group.value
|
| 31 |
with gr.Row():
|
| 32 |
model_size = gr.CheckboxGroup(
|
| 33 |
-
choices=MODEL_SIZE,
|
| 34 |
-
value=MODEL_SIZE,
|
| 35 |
label='Model Size',
|
| 36 |
interactive=True
|
| 37 |
)
|
| 38 |
model_type = gr.CheckboxGroup(
|
| 39 |
-
choices=MODEL_TYPE,
|
| 40 |
-
value=MODEL_TYPE,
|
| 41 |
label='Model Type',
|
| 42 |
interactive=True
|
| 43 |
)
|
| 44 |
data_component = gr.components.DataFrame(
|
| 45 |
-
value=table[headers],
|
| 46 |
-
type=
|
| 47 |
datatype=[type_map[x] for x in headers],
|
| 48 |
-
interactive=False,
|
| 49 |
visible=True)
|
| 50 |
-
|
| 51 |
def filter_df(fields, model_size, model_type):
|
| 52 |
headers = check_box['essential'] + fields
|
| 53 |
df = cp.deepcopy(table)
|
|
@@ -58,12 +61,12 @@ with gr.Blocks() as demo:
|
|
| 58 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
| 59 |
df = df[df['flag']]
|
| 60 |
df.pop('flag')
|
| 61 |
-
|
| 62 |
comp = gr.components.DataFrame(
|
| 63 |
-
value=df[headers],
|
| 64 |
-
type=
|
| 65 |
datatype=[type_map[x] for x in headers],
|
| 66 |
-
interactive=False,
|
| 67 |
visible=True)
|
| 68 |
return comp
|
| 69 |
|
|
@@ -84,31 +87,31 @@ with gr.Blocks() as demo:
|
|
| 84 |
s.checkbox_group = gr.CheckboxGroup(
|
| 85 |
choices=s.check_box['all'],
|
| 86 |
value=s.check_box['required'],
|
| 87 |
-
label=f
|
| 88 |
interactive=True,
|
| 89 |
)
|
| 90 |
s.headers = s.check_box['essential'] + s.checkbox_group.value
|
| 91 |
with gr.Row():
|
| 92 |
s.model_size = gr.CheckboxGroup(
|
| 93 |
-
choices=MODEL_SIZE,
|
| 94 |
-
value=MODEL_SIZE,
|
| 95 |
label='Model Size',
|
| 96 |
interactive=True
|
| 97 |
)
|
| 98 |
s.model_type = gr.CheckboxGroup(
|
| 99 |
-
choices=MODEL_TYPE,
|
| 100 |
-
value=MODEL_TYPE,
|
| 101 |
label='Model Type',
|
| 102 |
interactive=True
|
| 103 |
)
|
| 104 |
s.data_component = gr.components.DataFrame(
|
| 105 |
-
value=s.table[s.headers],
|
| 106 |
-
type=
|
| 107 |
datatype=[s.type_map[x] for x in s.headers],
|
| 108 |
-
interactive=False,
|
| 109 |
visible=True)
|
| 110 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
| 111 |
-
|
| 112 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
| 113 |
s = structs[DATASETS.index(dataset_name)]
|
| 114 |
headers = s.check_box['essential'] + fields
|
|
@@ -120,25 +123,27 @@ with gr.Blocks() as demo:
|
|
| 120 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
| 121 |
df = df[df['flag']]
|
| 122 |
df.pop('flag')
|
| 123 |
-
|
| 124 |
comp = gr.components.DataFrame(
|
| 125 |
-
value=df[headers],
|
| 126 |
-
type=
|
| 127 |
datatype=[s.type_map[x] for x in headers],
|
| 128 |
-
interactive=False,
|
| 129 |
visible=True)
|
| 130 |
return comp
|
| 131 |
|
| 132 |
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
|
| 133 |
-
cbox.change(
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
|
| 136 |
with gr.Row():
|
| 137 |
-
with gr.Accordion(
|
| 138 |
citation_button = gr.Textbox(
|
| 139 |
-
value=CITATION_BUTTON_TEXT,
|
| 140 |
label=CITATION_BUTTON_LABEL,
|
| 141 |
elem_id='citation-button')
|
| 142 |
|
| 143 |
if __name__ == '__main__':
|
| 144 |
-
demo.launch(server_name='0.0.0.0')
|
|
|
|
| 1 |
import abc
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from gen_table import *
|
| 6 |
+
from meta_data import *
|
| 7 |
|
| 8 |
with gr.Blocks() as demo:
|
| 9 |
struct = load_results()
|
|
|
|
| 27 |
checkbox_group = gr.CheckboxGroup(
|
| 28 |
choices=check_box['all'],
|
| 29 |
value=check_box['required'],
|
| 30 |
+
label='Evaluation Dimension',
|
| 31 |
interactive=True,
|
| 32 |
)
|
| 33 |
headers = check_box['essential'] + checkbox_group.value
|
| 34 |
with gr.Row():
|
| 35 |
model_size = gr.CheckboxGroup(
|
| 36 |
+
choices=MODEL_SIZE,
|
| 37 |
+
value=MODEL_SIZE,
|
| 38 |
label='Model Size',
|
| 39 |
interactive=True
|
| 40 |
)
|
| 41 |
model_type = gr.CheckboxGroup(
|
| 42 |
+
choices=MODEL_TYPE,
|
| 43 |
+
value=MODEL_TYPE,
|
| 44 |
label='Model Type',
|
| 45 |
interactive=True
|
| 46 |
)
|
| 47 |
data_component = gr.components.DataFrame(
|
| 48 |
+
value=table[headers],
|
| 49 |
+
type='pandas',
|
| 50 |
datatype=[type_map[x] for x in headers],
|
| 51 |
+
interactive=False,
|
| 52 |
visible=True)
|
| 53 |
+
|
| 54 |
def filter_df(fields, model_size, model_type):
|
| 55 |
headers = check_box['essential'] + fields
|
| 56 |
df = cp.deepcopy(table)
|
|
|
|
| 61 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
| 62 |
df = df[df['flag']]
|
| 63 |
df.pop('flag')
|
| 64 |
+
|
| 65 |
comp = gr.components.DataFrame(
|
| 66 |
+
value=df[headers],
|
| 67 |
+
type='pandas',
|
| 68 |
datatype=[type_map[x] for x in headers],
|
| 69 |
+
interactive=False,
|
| 70 |
visible=True)
|
| 71 |
return comp
|
| 72 |
|
|
|
|
| 87 |
s.checkbox_group = gr.CheckboxGroup(
|
| 88 |
choices=s.check_box['all'],
|
| 89 |
value=s.check_box['required'],
|
| 90 |
+
label=f'{dataset} CheckBoxes',
|
| 91 |
interactive=True,
|
| 92 |
)
|
| 93 |
s.headers = s.check_box['essential'] + s.checkbox_group.value
|
| 94 |
with gr.Row():
|
| 95 |
s.model_size = gr.CheckboxGroup(
|
| 96 |
+
choices=MODEL_SIZE,
|
| 97 |
+
value=MODEL_SIZE,
|
| 98 |
label='Model Size',
|
| 99 |
interactive=True
|
| 100 |
)
|
| 101 |
s.model_type = gr.CheckboxGroup(
|
| 102 |
+
choices=MODEL_TYPE,
|
| 103 |
+
value=MODEL_TYPE,
|
| 104 |
label='Model Type',
|
| 105 |
interactive=True
|
| 106 |
)
|
| 107 |
s.data_component = gr.components.DataFrame(
|
| 108 |
+
value=s.table[s.headers],
|
| 109 |
+
type='pandas',
|
| 110 |
datatype=[s.type_map[x] for x in s.headers],
|
| 111 |
+
interactive=False,
|
| 112 |
visible=True)
|
| 113 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
| 114 |
+
|
| 115 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
| 116 |
s = structs[DATASETS.index(dataset_name)]
|
| 117 |
headers = s.check_box['essential'] + fields
|
|
|
|
| 123 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
| 124 |
df = df[df['flag']]
|
| 125 |
df.pop('flag')
|
| 126 |
+
|
| 127 |
comp = gr.components.DataFrame(
|
| 128 |
+
value=df[headers],
|
| 129 |
+
type='pandas',
|
| 130 |
datatype=[s.type_map[x] for x in headers],
|
| 131 |
+
interactive=False,
|
| 132 |
visible=True)
|
| 133 |
return comp
|
| 134 |
|
| 135 |
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
|
| 136 |
+
cbox.change(
|
| 137 |
+
fn=filter_df_l2,
|
| 138 |
+
inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type],
|
| 139 |
+
outputs=s.data_component)
|
| 140 |
|
| 141 |
with gr.Row():
|
| 142 |
+
with gr.Accordion('Citation', open=False):
|
| 143 |
citation_button = gr.Textbox(
|
| 144 |
+
value=CITATION_BUTTON_TEXT,
|
| 145 |
label=CITATION_BUTTON_LABEL,
|
| 146 |
elem_id='citation-button')
|
| 147 |
|
| 148 |
if __name__ == '__main__':
|
| 149 |
+
demo.launch(server_name='0.0.0.0')
|
gen_table.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy as cp
|
| 2 |
+
import json
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from urllib.request import urlopen
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
from meta_data import META_FIELDS, URL
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def listinstr(lst, s):
|
| 14 |
+
assert isinstance(lst, list)
|
| 15 |
+
for item in lst:
|
| 16 |
+
if item in s:
|
| 17 |
+
return True
|
| 18 |
+
return False
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def load_results():
|
| 22 |
+
data = json.loads(urlopen(URL).read())
|
| 23 |
+
return data
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def nth_large(val, vals):
|
| 27 |
+
return sum([1 for v in vals if v > val]) + 1
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def format_timestamp(timestamp):
|
| 31 |
+
date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6]
|
| 32 |
+
time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
|
| 33 |
+
return date + ' ' + time
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def model_size_flag(sz, FIELDS):
|
| 37 |
+
if pd.isna(sz) and 'Unknown' in FIELDS:
|
| 38 |
+
return True
|
| 39 |
+
if pd.isna(sz):
|
| 40 |
+
return False
|
| 41 |
+
if '<10B' in FIELDS and sz < 10:
|
| 42 |
+
return True
|
| 43 |
+
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
|
| 44 |
+
return True
|
| 45 |
+
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
|
| 46 |
+
return True
|
| 47 |
+
if '>40B' in FIELDS and sz >= 40:
|
| 48 |
+
return True
|
| 49 |
+
return False
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def model_type_flag(line, FIELDS):
|
| 53 |
+
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
|
| 54 |
+
return True
|
| 55 |
+
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
|
| 56 |
+
return True
|
| 57 |
+
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
|
| 58 |
+
return True
|
| 59 |
+
return False
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def BUILD_L1_DF(results, fields):
|
| 63 |
+
res = defaultdict(list)
|
| 64 |
+
for i, m in enumerate(results):
|
| 65 |
+
item = results[m]
|
| 66 |
+
meta = item['META']
|
| 67 |
+
for k in META_FIELDS:
|
| 68 |
+
if k == 'Parameters (B)':
|
| 69 |
+
param = meta['Parameters']
|
| 70 |
+
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
| 71 |
+
elif k == 'Method':
|
| 72 |
+
name, url = meta['Method']
|
| 73 |
+
res[k].append(f'<a href="{url}">{name}</a>')
|
| 74 |
+
else:
|
| 75 |
+
res[k].append(meta[k])
|
| 76 |
+
scores, ranks = [], []
|
| 77 |
+
for d in fields:
|
| 78 |
+
res[d].append(item[d]['Overall'])
|
| 79 |
+
if d == 'MME':
|
| 80 |
+
scores.append(item[d]['Overall'] / 28)
|
| 81 |
+
else:
|
| 82 |
+
scores.append(item[d]['Overall'])
|
| 83 |
+
ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values()]))
|
| 84 |
+
res['Avg Score'].append(round(np.mean(scores), 1))
|
| 85 |
+
res['Avg Rank'].append(round(np.mean(ranks), 2))
|
| 86 |
+
|
| 87 |
+
df = pd.DataFrame(res)
|
| 88 |
+
df = df.sort_values('Avg Rank')
|
| 89 |
+
|
| 90 |
+
check_box = {}
|
| 91 |
+
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
| 92 |
+
check_box['required'] = ['Avg Score', 'Avg Rank']
|
| 93 |
+
check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields
|
| 94 |
+
type_map = defaultdict(lambda: 'number')
|
| 95 |
+
type_map['Method'] = 'html'
|
| 96 |
+
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
| 97 |
+
check_box['type_map'] = type_map
|
| 98 |
+
return df, check_box
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def BUILD_L2_DF(results, dataset):
|
| 102 |
+
res = defaultdict(list)
|
| 103 |
+
fields = list(list(results.values())[0][dataset].keys())
|
| 104 |
+
non_overall_fields = [x for x in fields if 'Overall' not in x]
|
| 105 |
+
overall_fields = [x for x in fields if 'Overall' in x]
|
| 106 |
+
if dataset == 'MME':
|
| 107 |
+
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
|
| 108 |
+
overall_fields = overall_fields + ['Perception', 'Cognition']
|
| 109 |
+
|
| 110 |
+
for m in results:
|
| 111 |
+
item = results[m]
|
| 112 |
+
meta = item['META']
|
| 113 |
+
for k in META_FIELDS:
|
| 114 |
+
if k == 'Parameters (B)':
|
| 115 |
+
param = meta['Parameters']
|
| 116 |
+
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
| 117 |
+
elif k == 'Method':
|
| 118 |
+
name, url = meta['Method']
|
| 119 |
+
res[k].append(f'<a href="{url}">{name}</a>')
|
| 120 |
+
else:
|
| 121 |
+
res[k].append(meta[k])
|
| 122 |
+
fields = [x for x in fields]
|
| 123 |
+
|
| 124 |
+
for d in non_overall_fields:
|
| 125 |
+
res[d].append(item[dataset][d])
|
| 126 |
+
for d in overall_fields:
|
| 127 |
+
res[d].append(item[dataset][d])
|
| 128 |
+
|
| 129 |
+
df = pd.DataFrame(res)
|
| 130 |
+
all_fields = overall_fields + non_overall_fields
|
| 131 |
+
# Use the first 5 non-overall fields as required fields
|
| 132 |
+
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
|
| 133 |
+
|
| 134 |
+
if 'Overall' in overall_fields:
|
| 135 |
+
df = df.sort_values('Overall')
|
| 136 |
+
df = df.iloc[::-1]
|
| 137 |
+
|
| 138 |
+
check_box = {}
|
| 139 |
+
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
| 140 |
+
check_box['required'] = required_fields
|
| 141 |
+
check_box['all'] = all_fields
|
| 142 |
+
type_map = defaultdict(lambda: 'number')
|
| 143 |
+
type_map['Method'] = 'html'
|
| 144 |
+
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
| 145 |
+
check_box['type_map'] = type_map
|
| 146 |
+
return df, check_box
|
lb_info.py → meta_data.py
RENAMED
|
@@ -1,17 +1,3 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from collections import defaultdict
|
| 4 |
-
import gradio as gr
|
| 5 |
-
import copy as cp
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
-
def listinstr(lst, s):
|
| 9 |
-
assert isinstance(lst, list)
|
| 10 |
-
for item in lst:
|
| 11 |
-
if item in s:
|
| 12 |
-
return True
|
| 13 |
-
return False
|
| 14 |
-
|
| 15 |
# CONSTANTS-URL
|
| 16 |
URL = "http://opencompass.openxlab.space/utils/OpenVLM.json"
|
| 17 |
VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md'
|
|
@@ -138,125 +124,4 @@ LEADERBOARD_MD['ScienceQA_VAL'] = """
|
|
| 138 |
- During evaluation, we use `GPT-3.5-Turbo-0613` as the choice extractor for all VLMs if the choice can not be extracted via heuristic matching. **Zero-shot** inference is adopted.
|
| 139 |
"""
|
| 140 |
|
| 141 |
-
LEADERBOARD_MD['ScienceQA_TEST'] = LEADERBOARD_MD['ScienceQA_VAL']
|
| 142 |
-
|
| 143 |
-
from urllib.request import urlopen
|
| 144 |
-
|
| 145 |
-
def load_results():
|
| 146 |
-
data = json.loads(urlopen(URL).read())
|
| 147 |
-
return data
|
| 148 |
-
|
| 149 |
-
def nth_large(val, vals):
|
| 150 |
-
return sum([1 for v in vals if v > val]) + 1
|
| 151 |
-
|
| 152 |
-
def format_timestamp(timestamp):
|
| 153 |
-
return timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] + ' ' + timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
|
| 154 |
-
|
| 155 |
-
def model_size_flag(sz, FIELDS):
|
| 156 |
-
if pd.isna(sz) and 'Unknown' in FIELDS:
|
| 157 |
-
return True
|
| 158 |
-
if pd.isna(sz):
|
| 159 |
-
return False
|
| 160 |
-
if '<10B' in FIELDS and sz < 10:
|
| 161 |
-
return True
|
| 162 |
-
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
|
| 163 |
-
return True
|
| 164 |
-
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
|
| 165 |
-
return True
|
| 166 |
-
if '>40B' in FIELDS and sz >= 40:
|
| 167 |
-
return True
|
| 168 |
-
return False
|
| 169 |
-
|
| 170 |
-
def model_type_flag(line, FIELDS):
|
| 171 |
-
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
|
| 172 |
-
return True
|
| 173 |
-
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
|
| 174 |
-
return True
|
| 175 |
-
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
|
| 176 |
-
return True
|
| 177 |
-
return False
|
| 178 |
-
|
| 179 |
-
def BUILD_L1_DF(results, fields):
|
| 180 |
-
res = defaultdict(list)
|
| 181 |
-
for i, m in enumerate(results):
|
| 182 |
-
item = results[m]
|
| 183 |
-
meta = item['META']
|
| 184 |
-
for k in META_FIELDS:
|
| 185 |
-
if k == 'Parameters (B)':
|
| 186 |
-
param = meta['Parameters']
|
| 187 |
-
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
| 188 |
-
elif k == 'Method':
|
| 189 |
-
name, url = meta['Method']
|
| 190 |
-
res[k].append(f'<a href="{url}">{name}</a>')
|
| 191 |
-
else:
|
| 192 |
-
res[k].append(meta[k])
|
| 193 |
-
scores, ranks = [], []
|
| 194 |
-
for d in fields:
|
| 195 |
-
res[d].append(item[d]['Overall'])
|
| 196 |
-
if d == 'MME':
|
| 197 |
-
scores.append(item[d]['Overall'] / 28)
|
| 198 |
-
else:
|
| 199 |
-
scores.append(item[d]['Overall'])
|
| 200 |
-
ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values()]))
|
| 201 |
-
res['Avg Score'].append(round(np.mean(scores), 1))
|
| 202 |
-
res['Avg Rank'].append(round(np.mean(ranks), 2))
|
| 203 |
-
|
| 204 |
-
df = pd.DataFrame(res)
|
| 205 |
-
df = df.sort_values('Avg Rank')
|
| 206 |
-
|
| 207 |
-
check_box = {}
|
| 208 |
-
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
| 209 |
-
check_box['required'] = ['Avg Score', 'Avg Rank']
|
| 210 |
-
check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields
|
| 211 |
-
type_map = defaultdict(lambda: 'number')
|
| 212 |
-
type_map['Method'] = 'html'
|
| 213 |
-
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
| 214 |
-
check_box['type_map'] = type_map
|
| 215 |
-
return df, check_box
|
| 216 |
-
|
| 217 |
-
def BUILD_L2_DF(results, dataset):
|
| 218 |
-
res = defaultdict(list)
|
| 219 |
-
fields = list(list(results.values())[0][dataset].keys())
|
| 220 |
-
non_overall_fields = [x for x in fields if 'Overall' not in x]
|
| 221 |
-
overall_fields = [x for x in fields if 'Overall' in x]
|
| 222 |
-
if dataset == 'MME':
|
| 223 |
-
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
|
| 224 |
-
overall_fields = overall_fields + ['Perception', 'Cognition']
|
| 225 |
-
|
| 226 |
-
for m in results:
|
| 227 |
-
item = results[m]
|
| 228 |
-
meta = item['META']
|
| 229 |
-
for k in META_FIELDS:
|
| 230 |
-
if k == 'Parameters (B)':
|
| 231 |
-
param = meta['Parameters']
|
| 232 |
-
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
| 233 |
-
elif k == 'Method':
|
| 234 |
-
name, url = meta['Method']
|
| 235 |
-
res[k].append(f'<a href="{url}">{name}</a>')
|
| 236 |
-
else:
|
| 237 |
-
res[k].append(meta[k])
|
| 238 |
-
fields = [x for x in fields]
|
| 239 |
-
|
| 240 |
-
for d in non_overall_fields:
|
| 241 |
-
res[d].append(item[dataset][d])
|
| 242 |
-
for d in overall_fields:
|
| 243 |
-
res[d].append(item[dataset][d])
|
| 244 |
-
|
| 245 |
-
df = pd.DataFrame(res)
|
| 246 |
-
all_fields = overall_fields + non_overall_fields
|
| 247 |
-
# Use the first 5 non-overall fields as required fields
|
| 248 |
-
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
|
| 249 |
-
|
| 250 |
-
if 'Overall' in overall_fields:
|
| 251 |
-
df = df.sort_values('Overall')
|
| 252 |
-
df = df.iloc[::-1]
|
| 253 |
-
|
| 254 |
-
check_box = {}
|
| 255 |
-
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
| 256 |
-
check_box['required'] = required_fields
|
| 257 |
-
check_box['all'] = all_fields
|
| 258 |
-
type_map = defaultdict(lambda: 'number')
|
| 259 |
-
type_map['Method'] = 'html'
|
| 260 |
-
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
| 261 |
-
check_box['type_map'] = type_map
|
| 262 |
-
return df, check_box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# CONSTANTS-URL
|
| 2 |
URL = "http://opencompass.openxlab.space/utils/OpenVLM.json"
|
| 3 |
VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md'
|
|
|
|
| 124 |
- During evaluation, we use `GPT-3.5-Turbo-0613` as the choice extractor for all VLMs if the choice can not be extracted via heuristic matching. **Zero-shot** inference is adopted.
|
| 125 |
"""
|
| 126 |
|
| 127 |
+
LEADERBOARD_MD['ScienceQA_TEST'] = LEADERBOARD_MD['ScienceQA_VAL']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
|
|
|
| 1 |
numpy>=1.23.4
|
| 2 |
pandas>=1.5.3
|
| 3 |
-
gradio==4.15.0
|
|
|
|
| 1 |
+
gradio==4.15.0
|
| 2 |
numpy>=1.23.4
|
| 3 |
pandas>=1.5.3
|
|
|